Separation of CO2/CH4 mixtures over NH2-MIL-53—An experimental and modelling study

[1]  Alírio E. Rodrigues,et al.  Methane purification by adsorptive processes on MIL-53(Al) , 2015 .

[2]  F. Kapteijn,et al.  Experimental Evidence of Negative Linear Compressibility in the MIL-53 Metal-Organic Framework Family. , 2015, CrystEngComm.

[3]  Carlos A. Grande,et al.  Advances in Pressure Swing Adsorption for Gas Separation , 2012 .

[4]  Rajamani Krishna,et al.  Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons , 2012 .

[5]  F. Kapteijn,et al.  Interplay of metal node and amine functionality in NH2-MIL-53: modulating breathing behavior through intra-framework interactions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[6]  Hong-Cai Zhou,et al.  Recent advances in carbon dioxide capture with metal‐organic frameworks , 2012 .

[7]  F. Kapteijn,et al.  High compressibility of a flexible metal–organic framework , 2012 .

[8]  G. Weireld,et al.  A complete procedure for acidic gas separation by adsorption on MIL-53 (Al) , 2012 .

[9]  M. A. van der Veen,et al.  NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. , 2012, Journal of the American Chemical Society.

[10]  A. Rodrigues,et al.  Separation of C3/C4 hydrocarbon mixtures by adsorption using a mesoporous iron MOF: MIL-100(Fe) , 2012 .

[11]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[12]  Vincent Guillerm,et al.  A method for screening the potential of MOFs as CO2 adsorbents in pressure swing adsorption processes. , 2012, ChemSusChem.

[13]  A. Ghoufi,et al.  Separation of CO2-CH4 mixtures in the mesoporous MIL-100(Cr) MOF: experimental and modelling approaches. , 2012, Dalton transactions.

[14]  Rajamani Krishna,et al.  A comparison of the CO2 capture characteristics of zeolites and metal-organic frameworks , 2012 .

[15]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[16]  F. Kapteijn,et al.  Kinetic control of metal-organic framework crystallization investigated by time-resolved in situ X-ray scattering. , 2011, Angewandte Chemie.

[17]  G. Centi,et al.  Carbon dioxide recycling: emerging large-scale technologies with industrial potential. , 2011, ChemSusChem.

[18]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[19]  Perla B. Balbuena,et al.  Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks , 2011 .

[20]  Rajamani Krishna,et al.  Screening metal–organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber , 2011 .

[21]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[22]  Seth M Cohen,et al.  Postsynthetic modification of metal-organic frameworks--a progress report. , 2011, Chemical Society reviews.

[23]  C. Janiak,et al.  MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs) , 2010 .

[24]  Seda Keskin,et al.  Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? , 2010, ChemSusChem.

[25]  Shuguang Deng,et al.  Adsorption of CO(2), CH(4), N(2)O, and N(2) on MOF-5, MOF-177, and zeolite 5A. , 2010, Environmental science & technology.

[26]  Claude Mirodatos,et al.  Natural gas treating by selective adsorption: Material science and chemical engineering interplay , 2009 .

[27]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[28]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[29]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[30]  A. Vimont,et al.  XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). , 2009, Dalton transactions.

[31]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[32]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[33]  Timothy E. Fout,et al.  Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program ☆ , 2008 .

[34]  Alírio E. Rodrigues,et al.  Removal of Carbon Dioxide from Natural Gas by Vacuum Pressure Swing Adsorption , 2006 .

[35]  Alírio E. Rodrigues,et al.  Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas , 2006 .

[36]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[37]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[38]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[39]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[40]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[41]  C. Serre,et al.  Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH).(O2C-C6H4-CO2).(HO2C-C6H4-CO2H)x. , 2002, Chemical communications.

[42]  Shivaji Sircar,et al.  Pressure Swing Adsorption , 2002 .

[43]  J. Marrot,et al.  A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. , 2002, Angewandte Chemie.

[44]  Anthony G. Dixon,et al.  An improved equation for the overall heat transfer coefficient in packed beds , 1996 .

[45]  R. T. Yang,et al.  Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue-Gas by Pressure Swing Adsorption , 1995 .

[46]  M. Puncochár,et al.  The tortuosity concept in fixed and fluidized bed , 1993 .

[47]  Evangelos Tsotsas,et al.  Heat transfer in packed beds with fluid flow: remarks on the meaning and the calculation of a heat transfer coefficient at the wall , 1990 .

[48]  Shivaji Sircar,et al.  Separation of Methane and Carbon Dioxide Gas Mixtures by Pressure Swing Adsorption , 1988 .

[49]  K. Westerterp,et al.  Chemical reactor design and operation , 1983 .

[50]  Silvio Sicardi,et al.  HEAT TRANSFER IN PACKED BED REACTORS WITH ONE PHASE FLOW , 1980 .

[51]  N. Wakao,et al.  EFFECT OF FLUID DISPERSION COEFFICIENTS ON PARTICLE-TO-FLUID MASS TRANSFER COEFFICIENTS IN PACKED BEDS. CORRELATION OF SHERWOOD NUMBERS , 1978 .

[52]  K. Bischoff A note on gas dispersion in packed beds , 1969 .