Numerical study of hypersonic dissociated air past blunt bodies

Nonequilibrium hypersonic flows past axisymmetric blunt bodies at zero incidence have been numerically simulated by the Navier-Stokes equations with finite-rate dissociation for both noncatalytic and fully catalytic surfaces. The high-temperature air mixture was described by the nonequilibrium Lighthill's dissociation gas model including the equilibrium vibrational excitation of diatomic gas molecules. The numerical results reproduced the detailed physics and the rate of heat transfer in the stagnation region, which agreed very well with the classic theories and experimental measurements.

[1]  J. F. Clarke,et al.  The Dynamics of Real Gases , 1964 .

[2]  Vernon H. Blackman,et al.  Vibrational relaxation in oxygen and nitrogen , 1956, Journal of Fluid Mechanics.

[3]  L. A. Anderson,et al.  Effect of surface catalytic activity on stagnation heat-transfer rates. , 1973 .

[4]  N. C. Freeman Non-equilibrium flow of an ideal dissociating gas , 1958, Journal of Fluid Mechanics.

[5]  F. G. Blottner,et al.  Viscous Shock Layer at the Stagnation Point with Nonequilibrium Air Chemistry , 1969 .

[6]  Ronald F. Probstein,et al.  Hypersonic Flow Theory , 1959 .

[7]  J. Shang,et al.  Numerical simulation of non-equilibrium hypersonic flows with wall catalytic effects , 1989 .

[8]  L. Lees Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speeds , 1956 .

[9]  D. Rizzetta,et al.  Comparative numerical study of hypersonic compression ramp flows , 1989 .

[10]  F. R. Riddell,et al.  Theory of Stagnation Point Heat Transfer in Dissociated Air , 1958 .

[11]  M. J. Lighthill,et al.  Dynamics of a dissociating gas Part I Equilibrium flow , 1957, Journal of Fluid Mechanics.

[12]  C. Park,et al.  On convergence of computation of chemically reacting flows , 1985 .

[13]  R. Goulard,et al.  On Catalytic Recombination Rates in Hypersonic Stagnation Heat Transfer , 1958 .

[14]  Peter H. Rose,et al.  Laminar Heat Transfer Around Blunt Bodies in Dissociated Air , 1959 .

[15]  Joseph Hilsenrath,et al.  TABLES OF THERMODYNAMIC PROPERTIES OF NITROGEN IN CHEMICAL EQUILIBRIUM INCLUDING SECOND VIRIAL CORRECTIONS FROM 2000 K TO 15,000 K , 1964 .

[16]  Jong-Hun Lee,et al.  Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles , 1984 .

[17]  G. M. Panchenkov,et al.  Chemical kinetics and catalysis , 1976 .

[18]  S. Scala Hypersonic Heat Transfer to Catalytic Surfaces , 1958 .

[19]  J. Shang,et al.  Flows over blunt bodies using a flux-splitting and shock-fitting scheme , 1986 .

[20]  R. Stalker Approximations for nonequilibrium hypervelocity aerodynamics , 1989 .

[21]  G. G. Chernyi,et al.  Introduction to Hypersonic Flow , 1961 .

[22]  Eswar Josyula,et al.  Numerical simulations of non-equilibrium hypersonic flow past blunt bodies , 1988 .

[23]  C. Li Time-Dependent Solutions of Nonequilibrium Airflow past a Blunt Body , 1972 .

[24]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[25]  Dinesh K. Prabhu,et al.  A New PNS Code for Chemical Nonequilibrium Flows , 1987 .

[26]  J. Shang An Assessment of Numerical Solutions of the Compressible Navier-Stokes Equations , 1985 .

[27]  R. Maccormack,et al.  Flow over a biconic configuration with an afterbody compression flap , 1983 .

[28]  J. S. Shang,et al.  Interaction of jet in hypersonic cross stream , 1987 .