Modeling Uncertainty, Context, and Information Fusion via Lattice-Based Probability

This chapter reviews and explores mathematical foundations for probabilistic inference, uncertainty representation, and fusion of disparate information sources. We will revisit probability measures defined on an event space that is modeled as a bounded distributive lattice—this includes as a special case Boolean lattice where each element has unique complementation and upon which standard probability theory has been axiomatized.

[1]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[2]  A. Monteiro Sur les algèbres de Heyting symétriques , 1980 .

[3]  Ronald Fagin,et al.  Uncertainty, belief, and probability 1 , 1991, IJCAI.

[4]  M. Stone The theory of representations for Boolean algebras , 1936 .

[5]  Jerome R. Busemeyer,et al.  Quantum Models of Cognition and Decision , 2012 .

[6]  Alain Chateauneuf,et al.  Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion , 1989, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[7]  Graciela Chichilnisky,et al.  The Foundations of Statistics with Black Swans , 2009 .

[8]  Louis Narens,et al.  A foundation for support theory based on a non-Boolean event space , 2009 .

[9]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[10]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[11]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[12]  P. Gartside,et al.  All Finite Distributive Lattices Occur as Intervals Between Hausdorff Topologies , 1997 .

[13]  Ronald R. Yager,et al.  Classic Works of the Dempster-Shafer Theory of Belief Functions , 2010, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[14]  Chunlai Zhou,et al.  Belief functions on distributive lattices , 2012, Artif. Intell..

[15]  A. Tarski,et al.  On Closed Elements in Closure Algebras , 1946 .

[16]  Louis Narens,et al.  Modeling Decisions Involving Ambiguous, Vague, or Rare Events , 2016 .

[17]  Jun Zhang,et al.  Information fusion with uncertainty modeled on topological event spaces , 2014, 2014 IEEE Symposium on Foundations of Computational Intelligence (FOCI).

[18]  Irving Kaplansky,et al.  Any Orthocomplemented Complete Modular Lattice is a Continuous Geometry , 1955 .

[19]  Glenn Shafer,et al.  Allocations of Probability , 1979, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[20]  Louis Narens,et al.  Alternative Probability Theories for Cognitive Psychology , 2014, Top. Cogn. Sci..

[21]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[22]  R. Larson,et al.  Basic intervals in the lattice of topologies , 1972 .

[23]  G. Birkhoff,et al.  On the combination of subalgebras , 1933, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  Jean-Pierre Barthélemy,et al.  Monotone Functions on Finite Lattices: An Ordinal Approach to Capacities, Belief and Necessity Functions , 2000 .

[25]  Louis Narens Probabilistic Lattices: Theory with an Application to Decision Theory , 2011 .

[26]  J. Rosický Modular, distributive and simple intervals of the lattice of topologies , 1975 .

[27]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .