Factors affecting optical dispersion in borate glass systems

Series of ternary glass systems namely, Na2O, B2O3, and RO (R ¼ Ba or Mg) doped with TiO2 are synthesized. The present glasses are dictated by requirement for a small refractive index and a small nonlinear coefficient needed for waveguide and laser fabrication requirements. The effect of MgO and BaO as alkaline earth metals on the optical properties of the glass systems is investigated. The dependence of the refractive index and extinction coefficient dispersion curves on composition is carried out over a wavelength range of 0.3–2:5mm. Applying a genetic algorithm technique, the parameters of Sellmeier dispersion formula that fit index data to accuracy consistent well with the measurements are given. The zero material dispersion-wavelength (ZMDW) and group velocity are also determined using the refractive index data. The Fermi level is calculated exploiting the extinction coefficient dispersion curves. The absorption coefficient, both direct and indirect optical energy gaps, and Urbach energy are evaluated using the absorption edge calculations. The different factors that play a role for controlling the refractive indices such as coordination number, electronic polarizability, field strength of cations, bridging and nonbridging oxygen, and optical basicity are discussed in accordance with the obtained index data. IR spectroscopy is used as a structural probe of the nearest-neighbor environment in the glass network. r 2007 Elsevier Ltd. All rights reserved.

[1]  A. L. Tomashuk,et al.  Refractive index dispersion of doped silica for fiber optics , 2002 .

[2]  Donald R Uhlmann,et al.  Glass--science and technology , 1980 .

[3]  E. Vogel,et al.  Structural and optical study of silicate glasses for nonlinear optical devices , 1989 .

[4]  W. Nazarewicz,et al.  Infrared studies of the structure of borate glasses , 1989 .

[5]  G. Chryssikos,et al.  Infrared reflectance spectra of lithium borate glasses , 1990 .

[6]  S. Sakka,et al.  Electronic oxide polarizability and optical basicity of simple oxides. I , 1996 .

[7]  M. Salagram,et al.  Optical band gap studies on (55−x)Na2O–xPbO–45P2O5 (SLP) glass system , 2000 .

[8]  T. Komatsu,et al.  Effect of Interionic Interaction on the Electronic Polarizability, Optical Basicity and Binding Energy of Simple Oxides , 1999 .

[9]  G. S. Murugan,et al.  TeO2–BaO–SrO–Nb2O5 glasses: a new glass system for waveguide devices applications , 2004 .

[10]  C. Tan,et al.  The mean polarizability and density of glasses , 1997 .

[11]  David Y. Smith,et al.  Refraction and dispersion in optical glass , 2004 .

[12]  J. Duffy A review of optical basicity and its applications to oxidic systems , 1993 .

[13]  A. H. Kahn,et al.  Electronic Polarizabilities of Ions in Crystals , 1953 .

[14]  T. Yoko,et al.  Structure and nonlinear optical properties of PbO-Bi2O3-B2O3 glasses , 1997 .

[15]  F. Berkemeier,et al.  Molar volume, glass-transition temperature, and ionic conductivity of Na- and Rb-borate glasses in comparison with mixed Na–Rb borate glasses , 2005 .

[16]  G. Chryssikos,et al.  A vibrational study of lithium sulfate based fast ionic conducting borate glasses , 1986 .

[17]  K. Hübner,et al.  Exciton-phonon interaction in crystalline and vitreous SiO2 , 1983 .

[18]  David Jiles,et al.  Introduction to the Electronic Properties of Materials , 1994 .

[19]  B. Abay,et al.  Urbach-Martienssen's tails in layered semiconductor GaSe , 1999 .

[20]  David Eimerl,et al.  Optical, mechanical, and thermal properties of barium borate , 1987 .

[21]  J. Perry,et al.  Second harmonic generation in transparent barium borate glass-ceramics , 1994 .

[22]  Ivan Fanderlik,et al.  Optical properties of glass , 1983 .

[23]  G. Chryssikos,et al.  Structure of borate glasses. II : Alkali induced network modifications in terms of structure and properties , 1990 .

[24]  N. Mott,et al.  Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors , 1970 .

[25]  H. Rawson Inorganic Glass Forming Systems , 1967 .

[26]  Keiji Tanaka Optical properties and photoinduced changes in amorphous AsS films , 1980 .

[27]  Yoshiyuki Asahara,et al.  Non-linear glass materials , 1997 .

[28]  Mario Affatigato,et al.  Physical properties of barium borate glasses determined over a wide range of compositions , 2000 .

[29]  M. A. Khashan,et al.  A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab , 2000 .

[30]  S. H. Wemple Material dispersion in optical fibers. , 1979, Applied optics.

[31]  Shin-ichi Todoroki,et al.  Optical Properties of Na2O–MgO–SiO2Optical Fiber , 1998 .

[32]  M. Zulfequar,et al.  Optical investigation of a—Ga x Se100–x thin films , 2000 .

[33]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[34]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[35]  H. Rawson,et al.  The effect of glass composition on the mean dispersion of barium borate glasses , 1978 .

[36]  H. Sobotta,et al.  Growth and optical properties of CuGaTe2 thin films , 1979 .

[37]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[38]  Anthony F. Garito,et al.  Recent progress in organic nonlinear optics , 1995, Optics & Photonics.

[39]  A. Levasseur,et al.  Structural investigation of doped lithium borate glasses , 1989 .

[40]  T. Komatsu,et al.  Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses , 1999 .

[41]  Tran Tri Nang,et al.  Electrical and Optical Properties of GexSe1-x Amorphous Thin Films , 1976 .

[42]  V. Sigaev,et al.  Structure and crystallization behavior of glasses in the BaO–B2O3–Al2O3 system , 1999 .

[43]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[44]  Kazuya Saito,et al.  Absorption edge in silica glass , 2000 .

[45]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[46]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[47]  Sumio Sakka,et al.  Linear and nonlinear optical properties of simple oxides. II , 1996 .

[48]  J L Beeby,et al.  Physics of amorphous materials , 1984 .

[49]  G. Ghosh,et al.  Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. , 1997, Applied optics.

[50]  H. A. Lorentz Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte , 1880 .

[51]  E. M. Levin,et al.  The system BaO-B2O3 , 1949 .

[52]  J. I. Escalante-García,et al.  Glass–ceramic materials with regulated dielectric properties based on the system BaO–PbO–TiO2–B2O3–Al2O3 , 2004 .

[53]  G. Chryssikos,et al.  Structure of borate glasses. I: Raman study of caesium, rubidium, and potassium borate glasses , 1989 .

[54]  J. Lee A new concise inorganic chemistry , 1977 .

[55]  L. Lorenz Ueber die Refractionsconstante , 1880 .

[56]  Y. N. Ahammed,et al.  Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity , 2001 .