High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27.

Cu-MOF-74 (also known as Cu-CPO-27) was identified as a sorbent having one of the highest densities of Cu(ii) sites per unit volume. Given that Cu(ii) in the framework can be thermally activated to yield a five-coordinate Cu(ii) species, we identified this MOF as a potential candidate for maximal volumetric uptake of ammonia. To that end, the kinetic breakthrough of ammonia in Cu-MOF-74/Cu-CPO-27 was examined under both dry and humid conditions. Under dry conditions the MOF exhibited a respectable performance (2.6 vs. 2.9 NH3 per nm(3) for the current record holder HKUST-1), and under 80% relative humidity, the MOF outperformed HKUST-1 (5.9 vs. 3.9 NH3 per nm(3), respectively).

[1]  J. Hupp,et al.  Selective Photooxidation of a Mustard-Gas Simulant Catalyzed by a Porphyrinic Metal-Organic Framework. , 2015, Angewandte Chemie.

[2]  Omar K Farha,et al.  Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework. , 2015, Angewandte Chemie.

[3]  L. M. Rodríguez-Albelo,et al.  Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents. , 2015, Angewandte Chemie.

[4]  M. Pillinger,et al.  Promotion of phosphoester hydrolysis by the ZrIV-based metal-organic framework UiO-67 , 2015 .

[5]  Michael J. Katz,et al.  Destruction of chemical warfare agents using metal-organic frameworks. , 2015, Nature materials.

[6]  Peyman Z. Moghadam,et al.  Computational Screening of Metal Catecholates for Ammonia Capture in Metal–Organic Frameworks , 2015 .

[7]  Michael J. Katz,et al.  Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2 † †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03613a Click here for additional data file. , 2015, Chemical science.

[8]  G. Wiederrecht,et al.  Metal-organic framework materials for light-harvesting and energy transfer. , 2015, Chemical communications.

[9]  Peyman Z. Moghadam,et al.  Understanding the Effects of Preadsorbed Perfluoroalkanes on the Adsorption of Water and Ammonia in MOFs , 2015 .

[10]  J. Navarro,et al.  Toxic gas removal--metal-organic frameworks for the capture and degradation of toxic gases and vapours. , 2014, Chemical Society reviews.

[11]  R. Sanz,et al.  Copper-based MOF-74 material as effective acid catalyst in Friedel–Crafts acylation of anisole , 2014 .

[12]  Jared B. DeCoste,et al.  Metal-organic frameworks for air purification of toxic chemicals. , 2014, Chemical reviews.

[13]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[14]  Michael J. Katz,et al.  Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants. , 2014, Angewandte Chemie.

[15]  Alexei Lapkin,et al.  Pollution prevention in the pharmaceutical industry , 2013 .

[16]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[17]  A. Yazaydin,et al.  A combined experimental and quantum chemical study of CO2 adsorption in the metal–organic framework CPO-27 with different metals , 2013 .

[18]  J. Hupp,et al.  Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. , 2013, Journal of the American Chemical Society.

[19]  Bukola Olalekan Bolaji,et al.  Ozone depletion and global warming: Case for the use of natural refrigerant – a review , 2013 .

[20]  S. Jhung,et al.  Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. , 2013, Journal of hazardous materials.

[21]  C. Malliakas,et al.  A straight forward route for the development of metal-organic frameworks functionalized with aromatic -OH groups: synthesis, characterization, and gas (N2, Ar, H2, CO2, CH4, NH3) sorption properties. , 2013, Inorganic chemistry.

[22]  Cheng Wang,et al.  Metal–Organic Frameworks for Light Harvesting and Photocatalysis , 2012 .

[23]  K. Ho,et al.  Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products , 2012 .

[24]  Jeffrey R. Long,et al.  Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). , 2012, Journal of the American Chemical Society.

[25]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[26]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[27]  Jianrong Li,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[28]  Michael O'Keeffe,et al.  Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. , 2012, Chemical reviews.

[29]  C. Petit,et al.  Synthesis, Characterization, and Ammonia Adsorption Properties of Mesoporous Metal–Organic Framework (MIL(Fe))–Graphite Oxide Composites: Exploring the Limits of Materials Fabrication , 2011 .

[30]  G. Peterson,et al.  MOF-74 building unit has a direct impact on toxic gas adsorption , 2011 .

[31]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[32]  Omar K Farha,et al.  Rational design, synthesis, purification, and activation of metal-organic framework materials. , 2010, Accounts of chemical research.

[33]  H. Furukawa,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[34]  G. Peterson,et al.  Ammonia Vapor Removal by Cu(3)(BTC)(2) and Its Characterization by MAS NMR. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[35]  S. Nguyen,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[36]  Hong‐Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[37]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[38]  Michael J. Katz,et al.  Polymorphism of Zn[Au(CN)2]2 and its luminescent sensory response to NH3 vapor. , 2008, Journal of the American Chemical Society.

[39]  L. Broadbelt,et al.  Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[40]  A. Berg,et al.  Ammonia sensors and their applications - a review , 2005 .

[41]  R. Streatfeild,et al.  Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production , 2002 .

[42]  Jeffrey R. Long,et al.  Evaluating metal–organic frameworks for natural gas storage , 2014 .