Fundamental formulations and recent achievements in piezoelectric nano-structures: a review.

Piezoelectric nano-structures have been regarded as the next-generation piezoelectric material due to their inherent nano-sized piezoelectricity. This review summarizes the recent theoretical and experimental findings in piezoelectric nano-structures, including piezoelectric nanowires, nanoplates, nanobeams, nanofilms, nanoparticles, and piezoelectric heterogeneous materials containing piezoelectric nano-inhomogeneities. To begin, the types of piezoelectric nano-structured materials and the wide application of piezoelectric nano-structures in recent years are delineated. Next, the theoretical foundations including the definition of surface stress and electric displacement, the surface constitutive relations, the surface equilibrium equations, and nonlocal piezoelectricity, and their applications, are illustrated. Then, the effective mechanical and piezoelectric properties are depicted. Furthermore, the experimental investigations are classified, and some important observations are discussed. Finally, the perspectives and challenges for the future development of piezoelectric nano-structures are pointed out.

[1]  V. Gupta,et al.  Effect of couple stress at the interfaces of a nano-hole on the anti-plane electro-mechanical behavior , 2013 .

[2]  Jinxi Liu,et al.  Effect of interface energy on effective dynamic properties of piezoelectric medium with randomly distributed piezoelectric nano-fibers , 2012 .

[3]  H. Fujisawa,et al.  Selective growth of ZnO nanorods and their applications to ferroelectric nanorods , 2012 .

[4]  Arijit Ghosh,et al.  Observation of relaxor ferroelectricity and multiferroic behaviour in nanoparticles of the ferromagnetic semiconductor La2NiMnO6 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  M. Stroscio,et al.  Piezoelectricity in lead zirconate titanate nanowires: A theoretical study , 2012 .

[6]  Chengyuan Wang,et al.  Surface effect on the buckling of piezoelectric nanofilms , 2012 .

[7]  El Mokhtar Essassi,et al.  Piezoelectric β-polymorph formation and properties enhancement in graphene oxide – PVDF nanocomposite films , 2012 .

[8]  W. Bennett,et al.  Pb nanowire formation on Al/lead zirconate titanate surfaces in high-pressure hydrogen , 2012 .

[9]  Jong Min Kim,et al.  Radially dependent effective piezoelectric coefficient and enhanced piezoelectric potential due to geometrical stress confinement in ZnO nanowires/nanotubes , 2012 .

[10]  H. Imai,et al.  Piezoresponse properties of orderly assemblies of BaTiO3 and SrTiO3 nanocube single crystals , 2012 .

[11]  M. Cernea,et al.  Preparation and properties of nanocrystalline BNT-BTx piezoelectric ceramics by sol-gel and spark plasma sintering , 2012 .

[12]  J. Covas,et al.  Effect of filler dispersion on the electromechanical response of epoxy/vapor-grown carbon nanofiber composites , 2012 .

[13]  Liying Jiang,et al.  Surface effects on the vibration and buckling of piezoelectric nanoplates , 2012 .

[14]  Liying Jiang,et al.  Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness , 2012 .

[15]  S. Zwaag,et al.  Dielectrophoretically structured piezoelectric composites with high aspect ratio piezoelectric particles inclusions , 2012 .

[16]  John S. Dodds,et al.  Piezoelectric Characterization of PVDF-TrFE Thin Films Enhanced With ZnO Nanoparticles , 2012, IEEE Sensors Journal.

[17]  A. G. Arani,et al.  Nonlocal electro-thermal transverse vibration of embedded fluid-conveying DWBNNTs , 2012 .

[18]  M. Meyyappan,et al.  Vertical ZnO nanowire growth on metal substrates , 2012, Nanotechnology.

[19]  I. Davidson,et al.  Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries , 2012 .

[20]  Chengyuan Wang,et al.  Vibrating piezoelectric nanofilms as sandwich nanoplates , 2012 .

[21]  Zhezhe Wang,et al.  Fabrication of PZT nano dot array and their ferroelectric properties , 2012 .

[22]  D. Guo,et al.  Phase structure and nano-domain in high performance of BaTiO3 piezoelectric ceramics , 2012 .

[23]  X. Fang,et al.  Surface/interface effect around a piezoelectric nano-particle in a polymer matrix under compressional waves , 2012 .

[24]  Chengkuo Lee,et al.  Modeling and Experimental Study of a Low-Frequency-Vibration-Based Power Generator Using ZnO Nanowire Arrays , 2012, Journal of Microelectromechanical Systems.

[25]  M. A. Ahmed,et al.  The memory effect of Dy2.8Sr0.2Fe5O12(DySrIG) nanoparticles , 2012 .

[26]  V. Seena,et al.  A Novel Photoplastic Piezoelectric Nanocomposite for MEMS Applications , 2012, Journal of Microelectromechanical Systems.

[27]  Kenry,et al.  AlN nanowires: synthesis, physical properties, and nanoelectronics applications , 2012, Journal of Materials Science.

[28]  H. Kozuka,et al.  Ferroelectric domain structures of 0.4-μm-thick Pb(Zr,Ti)O3 films prepared by polyvinylpyrrolidone-assisted Sol-Gel method , 2012 .

[29]  M. Stroscio,et al.  Piezoelectricity in zincblende polar semiconductor nanowires: A theoretical study , 2012 .

[30]  Kaifa Wang,et al.  The electromechanical coupling behavior of piezoelectric nanowires: Surface and small-scale effects , 2012 .

[31]  X. Fang,et al.  Dynamic strength around two interacting piezoelectric nano-fibers with surfaces/interfaces in solid under electro-elastic waves , 2012 .

[32]  H. Imai,et al.  In situ growth BaTiO3 nanocubes and their superlattice from an aqueous process. , 2012, Nanoscale.

[33]  L. Ke,et al.  Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory , 2012 .

[34]  B. Vincent,et al.  Preparation and characterization of P(VDF-TrFE)/Al2O3 nanocomposite , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[35]  Nan Wang,et al.  Electrical actuation and readout in a nanoelectromechanical resonator based on a laterally suspended zinc oxide nanowire , 2012, Nanotechnology.

[36]  M. Cernea,et al.  Spark-plasma-sintering temperature dependence of structural and piezoelectric properties of BNT–BT0.08 nanostructured ceramics , 2012, Journal of Materials Science.

[37]  Majid Minary-Jolandan,et al.  Individual GaN nanowires exhibit strong piezoelectricity in 3D. , 2012, Nano letters.

[38]  Pedro Sá,et al.  Production and PFM Characterization of Barium Titanate Nanofibers , 2012 .

[39]  Amit Kumar,et al.  Ferroelectric and electrical characterization of multiferroic BiFeO3 at the single nanoparticle level , 2011 .

[40]  B. Fang,et al.  Surface effects on the wrinkling of piezoelectric films on compliant substrates , 2011 .

[41]  Senentxu Lanceros-Méndez,et al.  Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P(VDF-TrFE) nanocomposites , 2011 .

[42]  Harold S. Park,et al.  Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials , 2011 .

[43]  Aldo Di Carlo,et al.  Piezoelectric potential in vertically aligned nanowires for high output nanogenerators , 2011, Nanotechnology.

[44]  J. Capsal,et al.  Molecular mobility in piezoelectric hybrid nanocomposites with 0–3 connectivity: Volume fraction influence , 2011 .

[45]  X. Fang,et al.  Dynamic stress and electric displacement around a nano-fiber in piezoelectric nanocomposites under electro-elastic waves , 2011 .

[46]  Zhong Lin Wang,et al.  One-dimensional ZnO nanostructures: Solution growth and functional properties , 2011 .

[47]  Fucheng Zhang,et al.  Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect , 2011 .

[48]  Liying Jiang,et al.  The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects , 2011, Nanotechnology.

[49]  Zhong Lin Wang,et al.  Self-powered system with wireless data transmission. , 2011, Nano letters.

[50]  H. Imai,et al.  Growth of monodispersed SrTiO3 nanocubes by thermohydrolysis method , 2011 .

[51]  K. Ramachandran,et al.  Dielectric studies on hybridised PVDF–ZnO nanocomposites , 2011 .

[52]  Zhong-Lin Wang,et al.  Vertically integrated nanogenerator based on ZnO nanowire arrays , 2011 .

[53]  John A Rogers,et al.  Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. , 2011, ACS nano.

[54]  Xi-Qiao Feng,et al.  A continuum theory of surface piezoelectricity for nanodielectrics , 2011 .

[55]  M. Willatzen,et al.  Electromechanical phenomena in semiconductor nanostructures , 2011 .

[56]  Liying Jiang,et al.  Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires , 2011 .

[57]  Horacio D Espinosa,et al.  Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. , 2011, Nano letters.

[58]  Zhong Lin Wang,et al.  Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics , 2010 .

[59]  Young-Jun Park,et al.  Sound‐Driven Piezoelectric Nanowire‐Based Nanogenerators , 2010, Advanced materials.

[60]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[61]  I. Kim,et al.  The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics synthesized by the sol–gel technique , 2010 .

[62]  Xiaojun Yan,et al.  Piezoelectric actuation of direct-write electrospun fibers , 2010 .

[63]  K. Koumoto,et al.  Sub-10 nm strontium titanate nanocubes highly dispersed in non-polar organic solvents. , 2010, Nanoscale.

[64]  Hong Qiang. Wang,et al.  Effects of ball milling on microstructure and electrical properties of sol–gel derived (Bi0.5Na0.5)0.94Ba0.06TiO3 piezoelectric ceramics , 2010 .

[65]  Xi-Qiao Feng,et al.  Effect of surface stresses on the vibration and buckling of piezoelectric nanowires , 2010 .

[66]  Jian Shi,et al.  Fundamental study of mechanical energy harvesting using piezoelectric nanostructures , 2010 .

[67]  Guang Zhu,et al.  Flexible high-output nanogenerator based on lateral ZnO nanowire array. , 2010, Nano letters.

[68]  G. Zhu,et al.  Muscle‐Driven In Vivo Nanogenerator , 2010, Advanced materials.

[69]  Zhengzheng Shao,et al.  A continuum model of piezoelectric potential generated in a bent ZnO nanorod , 2010 .

[70]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[71]  Shuling Hu,et al.  A theory of flexoelectricity with surface effect for elastic dielectrics , 2010 .

[72]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[73]  Weilie Zhou,et al.  Solution-Based Growth of Monodisperse Cube-Like BaTiO3 Colloidal Nanocrystals , 2010 .

[74]  Fang Qian,et al.  Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. , 2010, Nano letters.

[75]  M. Cernea,et al.  Sol–gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics , 2010 .

[76]  Michael C. McAlpine,et al.  Piezoelectric ribbons printed onto rubber for flexible energy conversion. , 2010, Nano letters.

[77]  D. Fang,et al.  Strain effect on ferroelectric behaviors of BaTiO3 nanowires: a molecular dynamics study , 2010, Nanotechnology.

[78]  M. Syväjärvi,et al.  Aligned AlN nanowires by self-organized vapor–solid growth , 2009, Nanotechnology.

[79]  Zhiyuan Gao,et al.  Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators , 2009 .

[80]  Horacio D Espinosa,et al.  Experimental-computational investigation of ZnO nanowires strength and fracture. , 2009, Nano letters.

[81]  J. R. Sadaf,et al.  Trimming of aqueous chemically grown ZnO nanorods into ZnO nanotubes and their comparative optical properties , 2009 .

[82]  Zhong Lin Wang,et al.  Combined polarized Raman and atomic force microscopy: In situ study of point defects and mechanical properties in individual ZnO nanobelts , 2009 .

[83]  J. Galy,et al.  Spark Plasma Sintering as a Useful Technique to the Nanostructuration of Piezo‐Ferroelectric Materials , 2009 .

[84]  H. Zhang,et al.  Synthesis and piezoelectric properties of well-aligned ZnO nanowire arrays via a simple solution-phase approach , 2009 .

[85]  Zhong Lin Wang,et al.  Optimizing and Improving the Growth Quality of ZnO Nanowire Arrays Guided by Statistical Design of Experiments. , 2009, ACS nano.

[86]  A. Mitrushchenkov,et al.  Piezoelectric Properties of AlN, ZnO, and HgxZn1−xO Nanowires by First-Principles Calculations , 2009 .

[87]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[88]  H. Chan,et al.  The effect of magnetic nanoparticles on the morphology, ferroelectric, and magnetoelectric behaviors of CFO/P(VDF-TrFE) 0–3 nanocomposites , 2009 .

[89]  Zhong Lin Wang,et al.  Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. , 2009, Nano letters.

[90]  J. Galy,et al.  Macroscopic ferroelectricity and piezoelectricity in nanostructured BiScO3–PbTiO3 ceramics , 2009 .

[91]  Zhong Lin Wang,et al.  Cellular level biocompatibility and biosafety of ZnO nanowires , 2008 .

[92]  K. Yan,et al.  Subgrain Microstructure in High-Performance BaTiO3 Piezoelectric Ceramics , 2008 .

[93]  Zhong Lin Wang,et al.  Growth of Vertically Aligned ZnO Nanobelt Arrays on GaN Substrate , 2008 .

[94]  C. Lévy‐Clément,et al.  Conversion of ZnO Nanowires into Nanotubes with Tailored Dimensions , 2008 .

[95]  Eleftherios E. Gdoutos,et al.  Elasticity size effects in ZnO nanowires--a combined experimental-computational approach. , 2008, Nano letters.

[96]  H. Maiwa Preparation and Properties of BaTiO3 Ceramics by Spark Plasma Sintering , 2008 .

[97]  Y. Bando,et al.  Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures. , 2008, Nano letters.

[98]  Zhaoying Zhou,et al.  Piezoelectric characterization of a single zinc oxide nanowire using a nanoelectromechanical oscillator , 2008, Nanotechnology.

[99]  Caofeng Pan,et al.  Nanowire‐Based High‐Performance “Micro Fuel Cells”: One Nanowire, One Fuel Cell , 2008 .

[100]  J. Galy,et al.  Nanostructured ceramics of 0.92PbZn1/3Nb2/3O3–0.08PbTiO3 processed by SPS of nanocrystalline powders obtained by mechanosynthesis , 2008, Nanotechnology.

[101]  Y. Xi,et al.  ZnO nanorods for solar cells: Hydrothermal growth versus vapor deposition , 2008 .

[102]  Tahir Cagin,et al.  Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect , 2008 .

[103]  Tungyang Chen Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects , 2008 .

[104]  Daining Fang,et al.  Size-dependent ferroelectric behaviors of BaTiO3 nanowires , 2008 .

[105]  Guangwei She,et al.  Electrochemical/chemical synthesis of highly-oriented single-crystal ZnO nanotube arrays on transparent conductive substrates , 2007 .

[106]  R. Cook,et al.  Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires , 2007 .

[107]  Masatoshi Adachi,et al.  Barium Titanate Piezoelectric Ceramics Manufactured by Two-Step Sintering , 2007 .

[108]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[109]  Chenghua Sun,et al.  AlN nanowires for Al-based composites with high strength and low thermal expansion , 2007 .

[110]  Zhong Lin Wang The new field of nanopiezotronics , 2007 .

[111]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[112]  Zhong Lin Wang,et al.  Piezoelectric gated diode of a single zno nanowire , 2007 .

[113]  Y. Qiu,et al.  Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate , 2007 .

[114]  Yi Xi,et al.  Hydrothermal synthesis of ZnO nanobelts and gas sensitivity property , 2007 .

[115]  Jinhui Song,et al.  Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices , 2007 .

[116]  Yunfa Chen,et al.  Macro-quantity synthesis of AlN nanowires via combined technique of arc plasma jet and thermal treatment , 2007 .

[117]  Quan Li,et al.  From Layered Basic Zinc Acetate Nanobelts to Hierarchical Zinc Oxide Nanostructures and Porous Zinc Oxide Nanobelts , 2007 .

[118]  Huajian Gao,et al.  Size-dependent piezoelectricity in zinc oxide nanofilms from first-principles calculations , 2007 .

[119]  M. Naughton,et al.  Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission , 2006 .

[120]  Zhong Lin Wang,et al.  Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. , 2006, Nano letters.

[121]  D. Shen,et al.  Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. , 2006, The journal of physical chemistry. B.

[122]  D. Riley,et al.  Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. , 2006, The journal of physical chemistry. B.

[123]  D. Shen,et al.  Growth and optical properties of faceted hexagonal ZnO nanotubes. , 2006, The journal of physical chemistry. B.

[124]  M. Glinchuk,et al.  Ferroelectric thin films phase diagrams with self-polarized phase and electret state , 2006 .

[125]  X. Bai,et al.  In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles , 2006 .

[126]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[127]  Hongkun Park,et al.  Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. , 2006, Nano letters.

[128]  Shou-wen Yu,et al.  Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring , 2006 .

[129]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[130]  Gareth M. Fuge,et al.  Synthesis of Aligned Arrays of Ultrathin ZnO Nanotubes on a Si Wafer Coated with a Thin ZnO Film , 2005 .

[131]  Yong Ding,et al.  Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices , 2005, Science.

[132]  Xiangyang Ma,et al.  Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process , 2005 .

[133]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[134]  Zhong Lin Wang,et al.  Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope , 2004 .

[135]  Yong Ding,et al.  Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts , 2004, Science.

[136]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[137]  M. Cernea,et al.  Dielectric and piezoelectric behaviors of NBT-BT0.05 processed by sol–gel method , 2012 .

[138]  K. Loh,et al.  Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing , 2011 .

[139]  Zhong Lin Wang,et al.  Self-powered nanotech. , 2008, Scientific American.