On integrability of Hirota-Kimura type discretizations

We give an overview of the integrability of the Hirota-Kimura discretizationmethod applied to algebraically completely integrable (a.c.i.) systems with quadratic vector fields. Along with the description of the basic mechanism of integrability (Hirota-Kimura bases), we provide the reader with a fairly complete list of the currently available results for concrete a.c.i. systems.

[1]  Hirota-Kimura type discretization of the classical nonholonomic Suslov problem , 2008, 0807.2966.

[2]  A. F.,et al.  Theoretical Mechanics: , 1936, Nature.

[3]  P. Moerbeke,et al.  Algebraic Integrability, Painlevé Geometry and Lie Algebras , 2004 .

[4]  William Kahan,et al.  Unconventional Schemes for a Class of Ordinary Differential Equations-With Applications to the Korteweg-de Vries Equation , 1997 .

[5]  Jesús María Sanz-Serna,et al.  An unconventional symplectic integrator of W. Kahan , 1994 .

[6]  Y. Suris,et al.  On the Hamiltonian structure of Hirota‐Kimura discretization of the Euler top , 2007, 0707.4382.

[7]  C. Thompson,et al.  Integrable mappings and soliton equations II , 1989 .

[8]  Y. Suris The Problem of Integrable Discretization: Hamiltonian Approach , 2003 .

[9]  C. Thompson,et al.  Integrable mappings and soliton equations , 1988 .

[10]  P. Damianou,et al.  Algebraic Integrability of Lotka-Volterra equations in three dimensions , 2009, 0909.3567.

[11]  A. Veselov,et al.  Dressing chains and the spectral theory of the Schrödinger operator , 1993 .

[12]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[13]  Jerrold E. Marsden,et al.  Geometric phases, reduction and Lie-Poisson structure for the resonant three-wave interaction , 1998 .

[14]  Y. Suris,et al.  Integrable mappings of the standard type , 1989 .

[15]  G. Halphen Traité des fonctions elliptiques et de leurs applications , 1888 .

[16]  M. Gaudin Diagonalisation d'une classe d'hamiltoniens de spin , 1976 .

[17]  A. Perelomov Integrable systems of classical mechanics and Lie algebras , 1989 .

[18]  A. Fursikov,et al.  Instability in Models Connected with Fluid Flows II , 2008 .

[19]  Kinji Kimura,et al.  Discretization of the Lagrange Top , 2000 .

[20]  Matteo Petrera,et al.  On Integrability of Hirota–Kimura-Type Discretizations: Experimental Study of the Discrete Clebsch System , 2008, Exp. Math..

[21]  Y. Suris,et al.  An Integrable Discretization of the Rational $${\mathfrak su(2)}$$ Gaudin Model and Related Systems , 2007, 0707.4088.

[22]  B. Nicolaenko,et al.  Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains , 2007, 0704.0337.

[23]  P'eter L'evay Geometric Phases , 2005 .

[24]  A. G. Reyman,et al.  Group-Theoretical Methods in the Theory of Finite-Dimensional Integrable Systems , 1994 .

[25]  Clebsch Ueber die Bewegung eines Körpers in einer Flüssigkeit , 1870 .

[26]  Inna Basak Explicit solution of the Zhukovski-Volterra gyrostat , 2009 .

[27]  G. Kirchhoff Ueber die Bewegung eines Rotationskörpers in einer Flüssigkeit. , 1870 .

[28]  F. Musso,et al.  A rigid body dynamics derived from a class of extended Gaudin models : an integrable discretization , 2005, math-ph/0503002.

[29]  Vito Volterra,et al.  Sur la théorie des variations des latitudes , 1899 .

[30]  Kinji Kimura,et al.  Discretization of the Euler top , 2000 .