Quantile fuzzy regression based on fuzzy outputs and fuzzy parameters

A new approach is investigated to the problem of quantile regression modeling based on the fuzzy response variable and the fuzzy parameters. In this approach, we first introduce a loss function between fuzzy numbers which it can present some quantiles of fuzzy data. Then, we fit a quantile regression model between the available data based on proposed loss function. To evaluate the goodness of fit of the optimal quantile fuzzy regression models, we introduce two indices. Inside, we study the application of the proposed approach in modeling some soil characteristics, based on a real data set.

[1]  Volker Krätschmer Strong consistency of least-squares estimation in linear regression models with vague concepts , 2006 .

[2]  Witold Pedrycz,et al.  A Tabu–Harmony Search-Based Approach to Fuzzy Linear Regression , 2011, IEEE Transactions on Fuzzy Systems.

[3]  Jalal Chachi,et al.  A fuzzy robust regression approach applied to bedload transport data , 2017, Commun. Stat. Simul. Comput..

[4]  Yunqiang Yin,et al.  Robust Fuzzy Varying Coefficient Regression Analysis with Crisp Inputs and Gaussian Fuzzy Output , 2013, J. Comput. Sci. Eng..

[5]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[6]  J. Mohammadi,et al.  PEDOMODELS FITTING WITH FUZZY LEAST SQUARES REGRESSION , 2004 .

[7]  Mohammad Ghasem Akbari,et al.  Multivariate Least Squares Regression using Interval-Valued Fuzzy Data and based on Extended Yao-Wu Signed Distance , 2014, Int. J. Comput. Intell. Syst..

[8]  Mohsen Arefi Clustering regression based on interval-valued fuzzy outputs and interval-valued fuzzy parameters , 2016, J. Intell. Fuzzy Syst..

[9]  Efendi N. Nasibov Fuzzy least squares regression model based of weighted distance between fuzzy numbers , 2007, Automatic Control and Computer Sciences.

[10]  Volker Krätschmer,et al.  Limit distributions of least squares estimators in linear regression models with vague concepts , 2006 .

[11]  S. Mahmoud Taheri,et al.  An interval-based approach to fuzzy regression for fuzzy input-output data , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[12]  J. Chachi,et al.  A least-absolutes approach to multiple fuzzy regression , 2011 .

[13]  Elham Hosseinzadeh,et al.  A weighted goal programming approach to estimate the linear regression model in full quasi type-2 fuzzy environment , 2016, J. Intell. Fuzzy Syst..

[14]  Dan Zhang,et al.  Robust Regression Analysis with LR-Type Fuzzy Input Variables and Fuzzy Output Variable , 2016 .

[15]  Elham Hosseinzadeh,et al.  A weighted goal programming approach to fuzzy linear regression with crisp inputs and type-2 fuzzy outputs , 2015, Soft Comput..

[16]  S. M. Taheri,et al.  Fuzzy least absolutes regression , 2008, 2008 4th International IEEE Conference Intelligent Systems.

[17]  E. Komarov,et al.  A fuzzy linear regression model for interval type-2 fuzzy sets , 2012, 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS).

[18]  Pierpaolo D'Urso,et al.  Least squares estimation of a linear regression model with LR fuzzy response , 2006, Comput. Stat. Data Anal..

[19]  Pierpaolo D'Urso,et al.  Robust fuzzy regression analysis , 2011, Inf. Sci..

[20]  Jacek M. Leski,et al.  On robust fuzzy c-regression models , 2015, Fuzzy Sets Syst..

[21]  Liang-Hsuan Chen,et al.  Fuzzy Regression Models Using the Least-Squares Method Based on the Concept of Distance , 2009, IEEE Transactions on Fuzzy Systems.

[22]  Mohammad Ghasem Akbari,et al.  Linear Model With Exact Inputs and Interval-Valued Fuzzy Outputs , 2018, IEEE Transactions on Fuzzy Systems.

[23]  R. Koenker Quantile Regression: Name Index , 2005 .

[24]  Miin-Shen Yang,et al.  On cluster-wise fuzzy regression analysis , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[25]  Miin-Shen Yang,et al.  Fuzzy least-squares linear regression analysis for fuzzy input-output data , 2002, Fuzzy Sets Syst..

[26]  A. Celmins Least squares model fitting to fuzzy vector data , 1987 .

[27]  R. Kruse,et al.  Statistics with vague data , 1987 .

[28]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[29]  Seyed Mahmoud Taheri,et al.  Least-Squares Regression Based on Atanassov's Intuitionistic Fuzzy Inputs–Outputs and Atanassov's Intuitionistic Fuzzy Parameters , 2015, IEEE Transactions on Fuzzy Systems.

[30]  Wenyi Zeng,et al.  Fuzzy least absolute linear regression , 2017, Appl. Soft Comput..

[31]  James J. Buckley,et al.  Fuzzy statistics: regression and prediction , 2005, Soft Comput..

[32]  Mohsen Arefi,et al.  WEIGHTED SIMILARITY MEASURE ON INTERVAL-VALUED FUZZY SETS AND ITS APPLICATION TO PATTERN RECOGNITION , 2014 .

[33]  James J. Buckley,et al.  Fuzzy regression using least absolute deviation estimators , 2007, Soft Comput..

[34]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy linear regression analysis , 2012, Fuzzy Optimization and Decision Making.

[35]  Saeedeh Pourahmad,et al.  FUZZY LOGISTIC REGRESSION: A NEW POSSIBILISTIC MODEL AN:Q ITS APPLICATION IN CLINICAL VAGUE STATUS , 2011 .

[36]  D. C. Vakaskar,et al.  Existence of Hukuhara differentiability of fuzzy-valued functions , 2016, 1609.04748.

[37]  S. M. Taheri,et al.  FUZZY LINEAR REGRESSION BASED ON LEAST ABSOLUTES DEVIATIONS , 2012 .

[38]  S. M. Taheri,et al.  Fuzzy least-absolutes regression using shape preserving operations , 2012, Inf. Sci..

[39]  Ruoning Xu,et al.  Multidimensional least-squares fitting with a fuzzy model , 2001, Fuzzy Sets Syst..

[40]  Hassan Hassanpour,et al.  A goal programming approach to fuzzy linear regression with fuzzy input–output data , 2011, Soft Comput..

[41]  J. Chachi,et al.  A Least-Absolutes Regression Model for Imprecise Response Based on the Generalized Hausdor-Metric , 2013 .

[42]  Hamid Reza Maleki,et al.  FUZZY LINEAR REGRESSION MODEL WITH CRISP COEFFICIENTS: A GOAL PROGRAMMING APPROACH , 2010 .