New approach to oximes through reduction of nitro compounds enabled by visible light photoredox catalysis.

A range of nitro compounds are smoothly reduced to their corresponding oximes under the synergistic effects of visible light irradiation, the Ru(bpy)3Cl2 photocatalyst, Hünig's base, Mg(ClO4)2 activation, and MeCN solvent. This remarkably mild and environmentally benign protocol, when orchestrated with classical Beckmann rearrangement, enables such high-value industrial feedstock as caprolactam to be readily accessed from simple precursor nitrocyclohexane.

[1]  D. MacMillan,et al.  Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. , 2013, Chemical reviews.

[2]  Guo-Bo Deng,et al.  Tandem cyclizations of 1,6-enynes with arylsulfonyl chlorides by using visible-light photoredox catalysis. , 2013, Angewandte Chemie.

[3]  Lan Bui,et al.  Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions. , 2013, Journal of the American Chemical Society.

[4]  K. Ohkubo,et al.  Selective photocatalytic reactions with organic photocatalysts , 2013 .

[5]  Lei Shi,et al.  Photoredox functionalization of C-H bonds adjacent to a nitrogen atom. , 2012, Chemical Society reviews.

[6]  T. Yoon,et al.  Visible light photocatalysis of [2+2] styrene cycloadditions by energy transfer. , 2012, Angewandte Chemie.

[7]  Qisong Liu,et al.  Visible-light-promoted C-C bond cleavage: photocatalytic generation of iminium ions and amino radicals. , 2012, Angewandte Chemie.

[8]  M. A. Ischay,et al.  Crossed Intermolecular [2+2] Cycloaddition of Styrenes by Visible Light Photocatalysis. , 2012, Chemical science.

[9]  Wen-Jing Xiao,et al.  Visible-light photoredox catalysis. , 2012, Angewandte Chemie.

[10]  Corey R J Stephenson,et al.  Visible light-mediated atom transfer radical addition via oxidative and reductive quenching of photocatalysts. , 2012, Journal of the American Chemical Society.

[11]  T. Rovis,et al.  Catalytic asymmetric α-acylation of tertiary amines mediated by a dual catalysis mode: N-heterocyclic carbene and photoredox catalysis. , 2012, Journal of the American Chemical Society.

[12]  C. Stephenson,et al.  Shining light on photoredox catalysis: theory and synthetic applications. , 2012, The Journal of organic chemistry.

[13]  Oliver Reiser,et al.  Visible light photoredox catalysis: generation and addition of N-aryltetrahydroisoquinoline-derived α-amino radicals to Michael acceptors. , 2012, Organic letters.

[14]  Rebecca L. Davis,et al.  Highly efficient aerobic oxidative hydroxylation of arylboronic acids: photoredox catalysis using visible light. , 2012, Angewandte Chemie.

[15]  Mingzhao Zhu,et al.  Intermolecular [3+2] cycloaddition of cyclopropylamines with olefins by visible-light photocatalysis. , 2012, Angewandte Chemie.

[16]  D. MacMillan,et al.  Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis , 2011, Nature.

[17]  Christopher K Prier,et al.  Discovery of an α-Amino C–H Arylation Reaction Using the Strategy of Accelerated Serendipity , 2011, Science.

[18]  C. G. Fry,et al.  Radical cation Diels-Alder cycloadditions by visible light photocatalysis. , 2011, Journal of the American Chemical Society.

[19]  Melanie S. Sanford,et al.  Room-temperature C-H arylation: merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis. , 2011, Journal of the American Chemical Society.

[20]  C. Stephenson,et al.  Tandem visible light-mediated radical cyclization-divinylcyclopropane rearrangement to tricyclic pyrrolidinones. , 2011, Organic letters.

[21]  T. Poisson,et al.  Visible light mediated azomethine ylide formation-photoredox catalyzed [3+2] cycloadditions. , 2011, Chemical communications.

[22]  W. Xiao,et al.  Visible-light-induced oxidation/[3+2] cycloaddition/oxidative aromatization sequence: a photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines. , 2011, Angewandte Chemie.

[23]  Magnus Rueping,et al.  Photoredox catalyzed C-P bond forming reactions-visible light mediated oxidative phosphonylations of amines. , 2011, Chemical communications.

[24]  Durga Prasad Hari,et al.  Eosin Y catalyzed visible light oxidative C-C and C-P bond formation. , 2011, Organic letters.

[25]  R. Ananthakrishnan,et al.  Metal-free-photocatalytic reduction of 4-nitrophenol by resin-supported dye under the visible irradiation , 2011 .

[26]  J. Vicario,et al.  Organocatalytic enantioselective formal conjugate addition of a hydroxymoyl anion to α,β-unsaturated aldehydes. , 2011, Chemistry.

[27]  Jennifer J. Becker,et al.  Investigating the rate of photoreductive glucosyl radical generation. , 2011, Organic letters.

[28]  Corey R J Stephenson,et al.  Intermolecular atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts. , 2011, Journal of the American Chemical Society.

[29]  Jagan M. R. Narayanam,et al.  Visible-light-mediated conversion of alcohols to halides. , 2011, Nature chemistry.

[30]  David R. Liu,et al.  A Biomolecule-Compatible Visible Light-Induced Azide Reduction from a DNA-Encoded Reaction Discovery System , 2010, Nature chemistry.

[31]  Corey R J Stephenson,et al.  Visible light photoredox catalysis: applications in organic synthesis. , 2011, Chemical Society reviews.

[32]  Jennifer J. Becker,et al.  Intermolecular addition of glycosyl halides to alkenes mediated by visible light. , 2010, Angewandte Chemie.

[33]  D. MacMillan,et al.  Enantioselective α-benzylation of aldehydes via photoredox organocatalysis. , 2010, Journal of the American Chemical Society.

[34]  M. A. Ischay,et al.  Visible light photocatalysis as a greener approach to photochemical synthesis. , 2010, Nature chemistry.

[35]  Joseph W Tucker,et al.  Tin-free radical cyclization reactions initiated by visible light photoredox catalysis. , 2010, Chemical communications.

[36]  M. A. Ischay,et al.  [2+2] cycloadditions by oxidative visible light photocatalysis. , 2010, Journal of the American Chemical Society.

[37]  M. Brimble,et al.  Total synthesis and absolute configuration of (-)-berkeleyamide A. , 2010, Organic letters.

[38]  C. Stephenson,et al.  Visible-light photoredox catalysis: aza-Henry reactions via C-H functionalization. , 2010, Journal of the American Chemical Society.

[39]  K. Zeitler Photoredox catalysis with visible light. , 2009, Angewandte Chemie.

[40]  X. Qian,et al.  One step from nitro to oxime: a convenient preparation of unsaturated oximes by the reduction of the corresponding vinylnitro compounds , 2009 .

[41]  Juana Du,et al.  Crossed intermolecular [2+2] cycloadditions of acyclic enones via visible light photocatalysis. , 2009, Journal of the American Chemical Society.

[42]  P. Righi,et al.  Comparative assessment of an alternative route to (5-benzylfuran-3-yl)methanol (Elliott's alcohol), a key intermediate for the industrial production of resmethrins , 2008 .

[43]  David A. Nicewicz,et al.  Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes , 2008, Science.

[44]  A. Corma,et al.  Gold Catalysts Open a New General Chemoselective Route to Synthesize Oximes by Hydrogenation of α,β-Unsaturated Nitrocompounds with H2 , 2007 .

[45]  K. Nagaiah,et al.  Triphenylphosphine-iodine : An efficient reagent system for the synthesis of nitriles from aldoximes , 2006 .

[46]  A. Yamaguchi,et al.  Photoinduced electron-transfer systems consisting of electron-donating pyrenes or anthracenes and benzimidazolines for reductive transformation of carbonyl compounds , 2006 .

[47]  M. Poliakoff,et al.  Chemistry: A cleaner way to nylon? , 2005, Nature.

[48]  E. Carreira,et al.  Convenient transformation of optically active nitroalkanes into chiral aldoximes and nitriles. , 2005, Angewandte Chemie.

[49]  D. Pei,et al.  trans-β-Nitrostyrene Derivatives as Slow-Binding Inhibitors of Protein Tyrosine Phosphatases† , 2004 .

[50]  A. Gergely,et al.  6-oxo-morphinane oximes: pharmacology, chemistry and analytical application. , 2004, Current medicinal chemistry.

[51]  T. Hirao,et al.  Ruthenium–Bipyridine Complex-Catalyzed Photo-Induced Reduction of Nitrobenzenes with Hydrazine , 2004 .

[52]  Dan Yang,et al.  Lewis acid-catalyzed atom transfer radical cyclization of unsaturated β-keto amides , 2003 .

[53]  D. Trauner,et al.  The total synthesis of (-)-amathaspiramide F. , 2002, Angewandte Chemie.

[54]  N. Zhu,et al.  Highly enantioselective atom-transfer radical cyclization reactions catalyzed by chiral Lewis acids. , 2001, Journal of the American Chemical Society.

[55]  M. Sibi,et al.  Enantioselective Hydrogen Atom Transfer Reactions: Synthesis ofN-Acyl-α-Amino Acid Esters , 2001 .

[56]  S. Fukuzumi,et al.  Magnesium perchlorate-catalyzed Diels-Alder reactions of anthracenes with p-benzoquinone derivatives : catalysis on the electron transfer step , 1993 .

[57]  R. Tardivel,et al.  Electrochemical conversion of α-nitrobenzylic compounds into the corresponding oximes—Part 2. Macroscale electrolyses , 1993 .

[58]  D. Albanese,et al.  Reduction of Allylic Nitro Compounds to Oximes with Carbon Disulfide under Solid-liquid Phase-Transfer Catalysis Conditions , 1990 .

[59]  D. Barton,et al.  A mild procedure for the reduction of aliphatic nitro compounds to oximes , 1987 .

[60]  H. Zimmerman,et al.  PHOTOCHEMICAL REARRANGEMENTS OF AN UNSATURATED NITRO COMPOUND. MECHANISTIC AND EXPLORATORY ORGANIC PHOTOCHEMISTRY. 103 , 1977 .

[61]  A. Ohta,et al.  Reduction of Some Nitro Compounds and Sulfoxides with Chromium(II) Chloride , 1977 .

[62]  C. H. Fawcett Auxin Activity of Certain Oximes , 1964, Nature.

[63]  C. Grundmann Über die partielle Reduktion von Nitro‐cyclohexan , 1950 .

[64]  Kenneth A. Johnson,et al.  The Utilization of Aliphatic Nitro Compounds. (I) The Production of Amines and (II) The Production of Oximes , 1939 .

[65]  J. V. Braun,et al.  Über primäre Dinitro-, Nitronitrit- und Dialdoxim-Verbindungen der Fettreihe , 1911 .