Finite element eigenvalues for the Laplacian over an L-shaped domain
暂无分享,去创建一个
[1] C. Moler,et al. APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .
[2] Dalia Fishelov,et al. LOCAL MESH REFINEMENT WITH FINITE ELEMENTS FOR ELLIPTIC PROBLEMS , 1978 .
[3] R. Collin. Field theory of guided waves , 1960 .
[4] Edward L. Wilson,et al. Numerical methods in finite element analysis , 1976 .
[5] J. Akin. The generation of elements with singularities , 1976 .
[6] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[7] Corner singularities in elliptic problems by finite element methods , 1971 .
[8] A. Wexler,et al. Iterative, Finite Difference Solution of Interior Eigenvalues and Eigenfunctions of Laplace's Operator , 1971, Comput. J..
[9] M. G. Milsted,et al. Use of trigonometric terms in the finite element method with application to vibrating membranes , 1974 .
[10] A. Ralston. A first course in numerical analysis , 1965 .
[11] G. Fix,et al. On the use of singular functions with finite element approximations , 1973 .
[12] R. M. Bulley,et al. Computation of Approximate Polynomial Solutions to TE Modes in an Arbitrarily Shaped Waveguide , 1969 .
[13] A. Wexler,et al. Unequal-Arm Finite-Difference Operators in the Positive-Definite Successive Overrelaxation (PDSOR) Algorithm , 1970 .