Web applications for spatial analyses and thematic map generation

Abstract By using precision agriculture as the basis for site-specific input applications, this study describes the development and implementation of a web-based computational tool for the spatial analysis of agricultural data and the creation of thematic maps. This tool, which is integrated into the R software environment, can create thematic maps using ordinary kriging and inverse distance weighting interpolation. In addition, the tool automatically selects the semivariogram parameters for geostatistical analyses and identifies the best-fitting model. To evaluate the software, statistical analyses of agricultural soil attributes and indices in two fields were performed to compare the maps generated by the developed tool and ArcMap. The results showed that most of the interpolations were similar across the maps. The developed tool is freely available online, simple, and reliable, and it allows users to provide information regarding spatial and temporal variabilities based on various attributes, thus contributing to more assertive decision making in agricultural management.

[1]  Zarko Zecevic,et al.  Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study , 2017, Comput. Electron. Agric..

[2]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[3]  Miguel Angel Uribe-Opazo,et al.  Management zones definition using soil chemical and physical attributes in a soybean area , 2013 .

[4]  Eduardo Godoy de Souza,et al.  Influência da distância entre passadas de colhedora equipada com monitor de colheita na precisão dos mapas de produtividade na cultura do milho , 2008 .

[5]  A. Konopka,et al.  FIELD-SCALE VARIABILITY OF SOIL PROPERTIES IN CENTRAL IOWA SOILS , 1994 .

[6]  B. Whelan,et al.  Precision Agriculture for Grain Production Systems , 2013 .

[7]  G. Matheron Principles of geostatistics , 1963 .

[8]  O. Adeoyolanu,et al.  Assessment of spatial variability and mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS) , 2017 .

[9]  Raimundo Pinheiro Neto,et al.  Influência da densidade amostral e do tipo de interpolador na elaboração de mapas temáticos - DOI: 10.4025/actasciagron.v31i1.6645 , 2009 .

[10]  G. Sanches,et al.  Site-specific assessment of spatial and temporal variability of sugarcane yield related to soil attributes , 2019, Geoderma.

[11]  A note on robust and non-robust variogram estimators (Uma discussão sobre os estimadores robustos e não-robustos de variogramas) , 2008 .

[12]  Nengcheng Chen,et al.  Integrated open geospatial web service enabled cyber-physical information infrastructure for precision agriculture monitoring , 2015, Comput. Electron. Agric..

[13]  R. Reese Geostatistics for Environmental Scientists , 2001 .

[14]  Uwe Zdun,et al.  Evolution of the R software ecosystem: Metrics, relationships, and their impact on qualities , 2017, J. Syst. Softw..

[15]  C. L. Bazzi,et al.  Interpolation methods for thematic maps of soybean yield and soil chemical attributes , 2017 .

[16]  Joann Mossa,et al.  Comparison of different spatial interpolation methods for historical hydrographic data of the lowermost Mississippi River , 2019, Ann. GIS.

[17]  J. R. Landis,et al.  The measurement of observer agreement for categorical data. , 1977, Biometrics.

[18]  Raj Khosla,et al.  Interpolation type and data computation of crop yield maps is important for precision crop production , 2016 .

[19]  Paulo Sérgio Graziano Magalhães,et al.  Software AgDataBox-Map to precision agriculture management , 2019, SoftwareX.

[20]  Piero Luigi Fernandes Mazzini,et al.  Avaliação de metodologias de interpolação espacial aplicadas a dados hidrográficos costeiros quase-sinóticos , 2009 .

[21]  Eduardo Godoy de Souza,et al.  Interpolation selection index for delineation of thematic maps , 2017, Comput. Electron. Agric..

[22]  Alexandre Escolà,et al.  Spatial variability in orchards after land transformation: Consequences for precision agriculture practices. , 2018, The Science of the total environment.

[23]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[24]  Spatial variability of soil thermal properties and their relationships with physical properties at field scale , 2019, Soil and Tillage Research.

[25]  Jin Li,et al.  Spatial interpolation methods applied in the environmental sciences: A review , 2014, Environ. Model. Softw..