On Gröbner Bases in the Context of Satisfiability-Modulo-Theories Solving over the Real Numbers

We address satisfiability checking for the first-order theory of the real-closed field (RCF) using satisfiability-modulo-theories (SMT) solving. SMT solvers combine a SAT solver to resolve the Boolean structure of a given formula with theory solvers to verify the consistency of sets of theory constraints.

[1]  Thomas Sturm,et al.  Simplification of Quantifier-Free Formulae over Ordered Fields , 1997, J. Symb. Comput..

[2]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[3]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[4]  Toby Walsh,et al.  Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications , 2009 .

[5]  Bjarke Hammersholt Roune,et al.  Practical Gröbner basis computation , 2012, ISSAC.

[6]  Alessandro Cimatti,et al.  Theory and Applications of Satisfiability Testing – SAT 2012 , 2012, Lecture Notes in Computer Science.

[7]  Volker Weispfenning,et al.  Quantifier Elimination for Real Algebra — the Quadratic Case and Beyond , 1997, Applicable Algebra in Engineering, Communication and Computing.

[8]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[9]  Grant Olney Passmore,et al.  On locally minimal Nullstellensatz proofs , 2009, SMT '09.

[10]  George B. Mertzios,et al.  A New Intersection Model for Multitolerance Graphs , Hierarchy , and Efficient Algorithms , 2010 .

[11]  Jürgen Giesl,et al.  Lazy Abstraction for Size-Change Termination , 2010, LPAR.

[12]  Jürgen Giesl,et al.  Automated Detection of Non-termination and NullPointerExceptions for Java Bytecode , 2011, FoVeOOS.

[13]  A Pettorossi Automata theory and formal languages , 2008 .

[14]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[15]  Uwe Naumann,et al.  Algorithmic Differentiation of a Complex C++ Code with Underlying Libraries , 2013, ICCS.

[16]  Renate A. Schmidt Automated Deduction - CADE-22, 22nd International Conference on Automated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings , 2009, CADE.

[17]  Christian Berger,et al.  Automating acceptance tests for sensor- and actuator-based systems on the example of autonomous vehicles , 2010, Aachener Informatik-Berichte, Software Engineering.

[18]  Bernhard Rumpe,et al.  MontiArc - Architectural Modeling of Interactive Distributed and Cyber-Physical Systems , 2014, ArXiv.

[19]  Theo Tryfonas,et al.  Frontiers in Artificial Intelligence and Applications , 2009 .

[20]  Roman Rabinovich,et al.  Solving Muller Games via Safety Games ⋆ , 2011 .

[21]  Sriram Sankaranarayanan,et al.  Integrating ICP and LRA solvers for deciding nonlinear real arithmetic problems , 2010, Formal Methods in Computer Aided Design.

[22]  Toby Walsh,et al.  Handbook of satisfiability , 2009 .

[23]  Paul B. Jackson,et al.  Gröbner Basis Construction Algorithms Based on Theorem Proving Saturation Loops , 2010, Decision Procedures in Software, Hardware and Bioware.

[24]  Grant Olney Passmore,et al.  Combined decision procedures for nonlinear arithmetics, real and complex , 2011 .

[25]  Fabian Emmes,et al.  Automated Complexity Analysis for Prolog by Term Rewriting ∗ , 2003 .

[26]  Bruno Dutertre,et al.  A Fast Linear-Arithmetic Solver for DPLL(T) , 2006, CAV.

[27]  Sebastian Junges,et al.  SMT-RAT: An SMT-Compliant Nonlinear Real Arithmetic Toolbox - (Tool Presentation) , 2012, SAT.

[28]  André Platzer,et al.  Real World Verification , 2009, CADE.