The mutational impact of culturing human pluripotent and adult stem cells

[1]  E. Cuppen,et al.  Early divergence of mutational processes in human fetal tissues , 2019, Science Advances.

[2]  George Q. Daley,et al.  Induced pluripotent stem cells in disease modelling and drug discovery , 2019, Nature Reviews Genetics.

[3]  Toshio Takahashi,et al.  Organoids for Drug Discovery and Personalized Medicine. , 2019, Annual review of pharmacology and toxicology.

[4]  Hans Clevers,et al.  Organoids in cancer research , 2018, Nature Reviews Cancer.

[5]  E. Cuppen,et al.  Measuring mutation accumulation in single human adult stem cells by whole-genome sequencing of organoid cultures , 2017, Nature Protocols.

[6]  Edwin Cuppen,et al.  MutationalPatterns: comprehensive genome-wide analysis of mutational processes , 2016, Genome Medicine.

[7]  S. Nik-Zainal,et al.  Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer , 2017, Science.

[8]  Y. Hayashizaki,et al.  Hotspots of De Novo Point Mutations in Induced Pluripotent Stem Cells. , 2017, Cell reports.

[9]  U. Martin Genome stability of programmed stem cell products , 2017, Advanced drug delivery reviews.

[10]  Michael P. Schroeder,et al.  Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations , 2017, Genome Medicine.

[11]  L. Alexandrov,et al.  Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas , 2017, The Journal of pathology.

[12]  R. Handsaker,et al.  Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations , 2017, Nature.

[13]  A. Giuliani,et al.  A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer , 2017, EBioMedicine.

[14]  Brian W Davis,et al.  iPSCs and fibroblast subclones from the same fibroblast population contain comparable levels of sequence variations , 2017, Proceedings of the National Academy of Sciences.

[15]  Hans Clevers,et al.  Tissue-specific mutation accumulation in human adult stem cells during life , 2016, Nature.

[16]  N. Benvenisty,et al.  Pluripotent stem cells in disease modelling and drug discovery , 2016, Nature Reviews Molecular Cell Biology.

[17]  P. Flicek,et al.  The Ensembl Regulatory Build , 2015, Genome Biology.

[18]  Hans Clevers,et al.  Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver , 2015, Cell.

[19]  D. Barras,et al.  BRAF Mutation in Colorectal Cancer: An Update , 2015, Biomarkers in cancer.

[20]  V. Tabar,et al.  Pluripotent stem cells in regenerative medicine: challenges and recent progress , 2014, Nature Reviews Genetics.

[21]  C. Spits,et al.  Gain of 20q11.21 in human embryonic stem cells improves cell survival by increased expression of Bcl-xL. , 2014, Molecular human reproduction.

[22]  Tao-Sheng Li,et al.  Culture under low physiological oxygen conditions improves the stemness and quality of induced pluripotent stem cells , 2013, Journal of cellular physiology.

[23]  R. Lothe,et al.  BCL-XL Mediates the Strong Selective Advantage of a 20q11.21 Amplification Commonly Found in Human Embryonic Stem Cell Cultures , 2013, Stem cell reports.

[24]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[25]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[26]  Y. Sasai Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. , 2013, Cell stem cell.

[27]  D. Schadendorf,et al.  TERT Promoter Mutations in Familial and Sporadic Melanoma , 2013, Science.

[28]  Lynda Chin,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2013, Science.

[29]  M. Stratton,et al.  Deciphering Signatures of Mutational Processes Operative in Human Cancer , 2013, Cell reports.

[30]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[31]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[32]  Dong Ryul Lee,et al.  Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage , 2011, Nature Biotechnology.

[33]  E. Tichy,et al.  Mechanisms maintaining genomic integrity in embryonic stem cells and induced pluripotent stem cells , 2011, Experimental biology and medicine.

[34]  Yoav Mayshar,et al.  Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells. , 2011, Cell stem cell.

[35]  H. Tse,et al.  Generation of induced pluripotent stem cells from urine. , 2011, Journal of the American Society of Nephrology : JASN.

[36]  M. Lalande,et al.  Recurrent copy number variations in human induced pluripotent stem cells , 2011, Nature Biotechnology.

[37]  Janet L Stein,et al.  Reprogramming the pluripotent cell cycle: Restoration of an abbreviated G1 phase in human induced pluripotent stem (iPS) cells , 2011, Journal of cellular physiology.

[38]  M. Newton,et al.  Karyotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells , 2011, Nature Biotechnology.

[39]  Jennifer M. Bolin,et al.  Chemically defined conditions for human iPS cell derivation and culture , 2011, Nature Methods.

[40]  Julie V. Harness,et al.  Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. , 2011, Cell stem cell.

[41]  Eduardo Marbán,et al.  Cardiospheres Recapitulate a Niche‐Like Microenvironment Rich in Stemness and Cell‐Matrix Interactions, Rationalizing Their Enhanced Functional Potency for Myocardial Repair , 2010, Stem cells.

[42]  G. Schatten,et al.  DNA Damage Responses in Human Induced Pluripotent Stem Cells and Embryonic Stem Cells , 2010, PloS one.

[43]  Yoav Mayshar,et al.  Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. , 2010, Cell stem cell.

[44]  Marc Peschanski,et al.  Human pluripotent stem cells in drug discovery and predictive toxicology. , 2010, Biochemical Society transactions.

[45]  E. Marbán,et al.  Physiological Levels of Reactive Oxygen Species Are Required to Maintain Genomic Stability in Stem Cells , 2010, Stem cells.

[46]  Hans Clevers,et al.  Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. , 2010, Cell stem cell.

[47]  M. Stratton,et al.  A census of amplified and overexpressed human cancer genes , 2010, Nature Reviews Cancer.

[48]  V. Bohr,et al.  Human Embryonic Stem Cells Have Enhanced Repair of Multiple Forms of DNA Damage , 2008, Stem cells.

[49]  P. Andrews,et al.  Adaptation to culture of human embryonic stem cells and oncogenesis in vivo , 2007, Nature Biotechnology.

[50]  J. Tischfield,et al.  Protecting genomic integrity in somatic cells and embryonic stem cells. , 2007, Mutation research.

[51]  J. Thomson,et al.  Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells , 2004, Nature Biotechnology.

[52]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[53]  A. Grollman,et al.  Mutagenesis by 8-oxoguanine: an enemy within. , 1993, Trends in genetics : TIG.

[54]  A. Morton-Cooper The enemy within. , 1984, Nursing mirror.

[55]  K. Johnson An Update. , 1984, Journal of food protection.