Von Lithium- zu Natriumionenbatterien: Vorteile, Herausforderungen und Überraschendes

Die mobile und stationare Energiespeicherung durch wiederaufladbare Batterien ist ein Thema von breiter gesellschaftlicher und okonomischer Bedeutung. Die wichtigste Technologie in diesem Bereich ist die Lithiumionenbatterie (LIB), jedoch muss man davon ausgehen, dass ein massiv wachsender LIB-Markt ernsten Druck auf Ressourcen und Lieferketten ausuben wird. Seit kurzem richtet sich die Aufmerksamkeit daher auch wieder auf die Natriumionenbatterie (SIB), die eine preisgunstige Alternative darstellen konnte, die weniger anfallig fur Ressourcen- und Versorgungsrisiken ist. Auf dem Papier scheint der Austausch von Lithium durch Natrium in einer Batterie unkompliziert, jedoch erlebt man in der Praxis oft unvorhersehbare Uberraschungen. Was geschieht, wenn in Elektrodenreaktionen Lithium durch Natrium ersetzt wird? Dieser Aufsatz bietet einen aktuellen Uberblick uber das Redoxverhalten von Materialien bei ihrer Verwendung als Elektroden in LIBs bzw. SIBs. Die Vorteile und Herausforderungen im Zusammenhang mit der Verwendung von Natrium anstelle von Lithium werden diskutiert.

[1]  A. J. Morris,et al.  Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach. , 2017, Journal of the American Chemical Society.

[2]  J. Yamaki,et al.  Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries , 2013 .

[3]  Nam-Soon Choi,et al.  Charge carriers in rechargeable batteries: Na ions vs. Li ions , 2013 .

[4]  Hiroaki Yoshida,et al.  NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆ , 2013 .

[5]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[6]  Shin-ichi Nishimura,et al.  High‐Voltage Pyrophosphate Cathodes , 2012 .

[7]  Chih-Chieh Wang,et al.  Mitigation of layer to spinel conversion of a lithium-rich layered oxide cathode by substitution of Al in a lithium ion battery , 2015 .

[8]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2− Na x (Li y Ni z Mn 1−y−z )O 2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries , 2014 .

[9]  T. Fässler,et al.  Revision of the Li–Si Phase Diagram: Discovery and Single-Crystal X-ray Structure Determination of the High-Temperature Phase Li4.11Si , 2013 .

[10]  Jens F. Peters,et al.  Life cycle assessment of sodium-ion batteries , 2016 .

[11]  T. R. Jow,et al.  Rechargeable Electrodes from Sodium Cobalt Bronzes , 1988 .

[12]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[13]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[14]  P. Adelhelm,et al.  Copper sulfides for rechargeable lithium batteries: Linking cycling stability to electrolyte composition , 2014 .

[15]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[16]  D. Aurbach,et al.  Improving Energy Density and Structural Stability of Manganese Oxide Cathodes for Na-Ion Batteries by Structural Lithium Substitution , 2016 .

[17]  Y. Ein‐Eli,et al.  A critical review-promises and barriers of conversion electrodes for Li-ion batteries , 2017, Journal of Solid State Electrochemistry.

[18]  Haoshen Zhou,et al.  Recent advances in titanium-based electrode materials for stationary sodium-ion batteries , 2016 .

[19]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[20]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[21]  Y. Idemoto,et al.  Synthesis, structure, and electrochemical Li-ion intercalation properties of Li2Ti3O7 with Na2Ti3O7-type layered structure , 2008 .

[22]  D. Qu,et al.  Facile Synthesis of Platelike Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 with Exposed {010} Planes for High-Rate and Long Cycling-Stable Lithium Ion Batteries. , 2016, ACS applied materials & interfaces.

[23]  Hiroshi Nakamura,et al.  Electrochemical Activities in Li2MnO3 , 2009 .

[24]  M. R. Palacín,et al.  Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries , 2015 .

[25]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[26]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[27]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[28]  Y. Meng,et al.  Exploring Li substituted O3-structured layered oxides NaLi x Ni 1/3 - X Mn 1/3 + x Co 1/3 - X O 2 (x = 0.07, 0.13, and 0.2) as promising cathode materials for rechargeable Na batteries , 2015 .

[29]  T. Sheela,et al.  Conversion reactions: a new pathway to realise energy in lithium-ion battery—review , 2009 .

[30]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[31]  K. Kang,et al.  Conditions for Reversible Na Intercalation in Graphite: Theoretical Studies on the Interplay Among Guest Ions, Solvent, and Graphite Host , 2017 .

[32]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[33]  D. Brandell,et al.  Solubility of the Solid Electrolyte Interphase (SEI) in Sodium Ion Batteries , 2016 .

[34]  Linghui Yu,et al.  Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐Based Batteries , 2012 .

[35]  J. E. Lee,et al.  Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries , 2016 .

[36]  A. Michaelis,et al.  In-situ preparation and electrochemical characterization of submicron sized NaFePO4 cathode material for sodium-ion batteries , 2017 .

[37]  P. Kumta,et al.  Tin and graphite based nanocomposites: Potential anode for sodium ion batteries , 2013 .

[38]  D. Aurbach,et al.  TEM and Raman spectroscopy evidence of layered to spinel phase transformation in layered LiNi1/3Mn1/3Co1/3O2 upon cycling to higher voltages , 2014 .

[39]  Xianyou Wang,et al.  Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via the hydroxide co-precipitation method LIB SCITECH , 2006 .

[40]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[41]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[42]  Chenglong Zhao,et al.  Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage , 2017 .

[43]  Yan Huang,et al.  Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material , 2013 .

[44]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[45]  D. Aurbach,et al.  Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn‐Rich Cathodes for Li‐Ion Batteries , 2016 .

[46]  Jun Wang,et al.  Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography , 2015, Nature Communications.

[47]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[48]  L. Nazar,et al.  Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability , 2015 .

[49]  T. Rojo,et al.  Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries. , 2015, Physical chemistry chemical physics : PCCP.

[50]  Yaolin Xu,et al.  Reversible Na‐Ion Uptake in Si Nanoparticles , 2016 .

[51]  D. Bresser,et al.  Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles , 2015 .

[52]  Arumugam Manthiram,et al.  Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries , 2010 .

[53]  K. Abraham Intercalation positive electrodes for rechargeable sodium cells , 1982 .

[54]  G. Ceder,et al.  Jahn − Teller Assisted Na Di ff usion for High Performance Na Ion Batteries , 2016 .

[55]  B. Nykvist,et al.  Rapidly falling costs of battery packs for electric vehicles , 2015 .

[56]  S. Jung,et al.  Origin of excellent rate and cycle performance of Na+-solvent cointercalated graphite vs. poor performance of Li+-solvent case , 2017 .

[57]  Hyunchul Kim,et al.  Sodium intercalation chemistry in graphite , 2015 .

[58]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[59]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[60]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[61]  Ya‐Xia Yin,et al.  An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability , 2016 .

[62]  L. Nazar,et al.  Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. , 2010, Angewandte Chemie.

[63]  P. Moreau,et al.  Elucidation of the Na(2/3)FePO₄ and Li(2/3)FePO₄ intermediate superstructure revealing a pseudouniform ordering in 2D. , 2014, Journal of the American Chemical Society.

[64]  Jens F. Peters,et al.  A Critical Assessment of the Resource Depletion Potential of Current and Future Lithium-Ion Batteries , 2016 .

[65]  Atsuo Yamada,et al.  Ab initio study of sodium intercalation into disordered carbon , 2015 .

[66]  H. Ache,et al.  Development of Thin Film Electrodes Based on Sputtered Amorphous Carbon , 1997 .

[67]  Xiulei Ji,et al.  New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. , 2015, Nano letters.

[68]  Akira Yoshino,et al.  The birth of the lithium-ion battery. , 2012, Angewandte Chemie.

[69]  Hideki Nakayama,et al.  First-principles study of alkali metal-graphite intercalation compounds , 2012 .

[70]  P. Adelhelm,et al.  Cell Concepts of Metal–Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications , 2017, Topics in Current Chemistry.

[71]  D. Mitlin,et al.  Anodes for sodium ion batteries based on tin-germanium-antimony alloys. , 2014, ACS nano.

[72]  Clement Bommier,et al.  Recent Development on Anodes for Na‐Ion Batteries , 2015 .

[73]  D. Aurbach,et al.  Electrochemical and structural characterization of carbon coated Li1.2Mn0.56Ni0.16Co0.08O2 and Li1.2Mn0.6Ni0.2O2 as cathode materials for Li-ion batteries , 2014 .

[74]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[75]  Jean-Marie Tarascon,et al.  Li2Fe(SO4)2 as a 3.83 V positive electrode material , 2012 .

[76]  S. Komaba,et al.  Electrochemical behavior and structural change of spinel-type Li[LixMn2−x]O4 (x=0 and 0.2) in sodium cells , 2012 .

[77]  Venkat Srinivasan,et al.  Resource constraints on the battery energy storage potential for grid and transportation applications , 2011 .

[78]  Doron Aurbach,et al.  Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. , 2016, ACS applied materials & interfaces.

[79]  P. Novák,et al.  The influence of electrolyte and graphite type on the PF 6 - intercalation behaviour at high potentials , 2009 .

[80]  Liquan Chen,et al.  The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature , 2000 .

[81]  A. Yamada,et al.  Electrode Properties of P2–Na2/3MnyCo1–yO2 as Cathode Materials for Sodium-Ion Batteries , 2013 .

[82]  Ruibing Yu,et al.  Investigation on the enhanced electrochemical performances of Li1.2Ni0.13Co0.13Mn0.54O2 by surface modification with ZnO , 2015 .

[83]  Fredrik J. Lindgren,et al.  Investigation of the Electrode/Electrolyte Interface of Fe2O3 Composite Electrodes: Li vs Na Batteries , 2014 .

[84]  G. Cao,et al.  A promising cathode for Li-ion batteries: Li 3 V 2 (PO 4 ) 3 , 2016 .

[85]  K. W. Kim,et al.  Electrochemical properties of sodium/pyrite battery at room temperature , 2007 .

[86]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[87]  William A. Goddard,et al.  Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries , 2015 .

[88]  Y. Orikasa,et al.  Pyrophosphate Na 2 FeP 2 O 7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid , 2014 .

[89]  B. Hwang,et al.  Experimental Study on Sodiation of Amorphous Silicon for Use as Sodium-Ion Battery Anode , 2016 .

[90]  Ji-Hoon Lee,et al.  Polythiophene-Wrapped Olivine NaFePO4 as a Cathode for Na-Ion Batteries. , 2016, ACS applied materials & interfaces.

[91]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[92]  M. J. McDonald,et al.  Zero-Strain Na2FeSiO4 as Novel Cathode Material for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[93]  A. Yamada,et al.  Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO2–NaNiO2 Solid Solution for Enhanced Electrochemical Properties , 2014 .

[94]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[95]  J. Tarascon,et al.  Taking steps forward in understanding the electrochemical behavior of Na2Ti3O7 , 2015 .

[96]  R. Ruoff,et al.  Two‐Dimensional Materials for Beyond‐Lithium‐Ion Batteries , 2016 .

[97]  Yuki Yamada,et al.  Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents , 2013 .

[98]  T. Rojo,et al.  Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis. , 2015, ACS applied materials & interfaces.

[99]  Kai Jiang,et al.  Simultaneously improved capacity and initial coulombic efficiency of Li-rich cathode Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by enlarging crystal cell from a nanoplate precursor , 2016 .

[100]  Jean-Marie Tarascon,et al.  Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide , 2006 .

[101]  D. Aurbach,et al.  Electrochemical performance of Na0.6[Li0.2Ni0.2Mn0.6]O2 cathodes with high-working average voltage for Na-ion batteries , 2017 .

[102]  J. Goodenough,et al.  Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries , 2015 .

[103]  Dipan Kundu,et al.  Natriumionenbatterien für die elektrochemische Energiespeicherung , 2015 .

[104]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[105]  Ying Bai,et al.  AlF3 surface-coated Li[Li0.2 Ni0.17 Co0.07 Mn0.56 ]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries. , 2015, ChemSusChem.

[106]  Doron Aurbach,et al.  The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li x MO y Host Materials (M = Ni, Mn) , 2000 .

[107]  Jason Graetz,et al.  Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. , 2011, Journal of the American Chemical Society.

[108]  S. Ong,et al.  A comparison of destabilization mechanisms of the layered Na(x)MO2 and Li(x)MO2 compounds upon alkali de-intercalation. , 2012, Physical chemistry chemical physics : PCCP.

[109]  Pengjian Zuo,et al.  Oxygen vacancies in SnO 2 surface coating to enhance the activation of layered Li-Rich Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode material for Li-ion batteries , 2016 .

[110]  Gerbrand Ceder,et al.  Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides , 2014 .

[111]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[112]  Feng Wu,et al.  Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[113]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[114]  A. Busnaina,et al.  Mitigation of Layered to Spinel Conversion of a Li-Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries , 2014 .

[115]  Hiroyuki Yamaguchi,et al.  Na4Co3(PO4)2P2O7: A novel storage material for sodium-ion batteries , 2013 .

[116]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[117]  Haijun Yu,et al.  High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries. , 2013, The journal of physical chemistry letters.

[118]  Thomas Wågberg,et al.  Toward a Low‐Cost Artificial Leaf: Driving Carbon‐Based and Bifunctional Catalyst Electrodes with Solution‐Processed Perovskite Photovoltaics , 2016 .

[119]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[120]  Ayyakkannu Manivannan,et al.  Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes , 2013 .

[121]  Xueping Gao,et al.  Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries , 2015 .

[122]  M. Miyayama,et al.  Hydrothermal synthesis of LiFePO4 with small particle size and its electrochemical properties , 2010 .

[123]  Lingjun Li,et al.  Highly crystalline alumina surface coating from hydrolysis of aluminum isopropoxide on lithium-rich layered oxide , 2015 .

[124]  Haoshen Zhou,et al.  High stable post-spinel NaMn2O4 cathode of sodium ion battery , 2014 .

[125]  D. A. D. Corte,et al.  Microsized Sn as Advanced Anodes in Glyme‐Based Electrolyte for Na‐Ion Batteries , 2016, Advanced materials.

[126]  B. Lucht,et al.  Effect of Added LiBOB on High Voltage (LiNi0.5Mn1.5O4) Spinel Cathodes , 2011 .

[127]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[128]  D. Aurbach,et al.  Study of the nanosized Li2MnO3: Electrochemical behavior, structure, magnetic properties, and vibrational modes , 2013 .

[129]  D. Aurbach,et al.  Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. , 2017, Physical chemistry chemical physics : PCCP.

[130]  D. Bresser,et al.  Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes , 2014 .

[131]  P. Adelhelm,et al.  Electrochemical performance of CuNCN for sodium ion batteries and comparison with ZnNCN and lithium ion batteries , 2017 .

[132]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[133]  Seung M. Oh,et al.  High-capacity anode materials for sodium-ion batteries. , 2014, Chemistry.

[134]  A. F. Holleman,et al.  Lehrbuch der anorganischen Chemie , 2010, Nature.

[135]  P. Adelhelm,et al.  A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries. , 2016, Physical chemistry chemical physics : PCCP.

[136]  K. Kubota,et al.  Direct synthesis of oxygen-deficient Li2MnO3−x for high capacity lithium battery electrodes , 2012 .

[137]  M. Winter,et al.  X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells , 2013 .

[138]  Qi Li,et al.  K(+)-doped Li(1.2)Mn(0.54)Co(0.13)Ni(0.13)O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[139]  Y. Meng,et al.  An advanced cathode for Na-ion batteries with high rate and excellent structural stability. , 2013, Physical chemistry chemical physics : PCCP.

[140]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[141]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[142]  G. H. Newman,et al.  Ambient Temperature Cycling of an Na ‐ TiS2 Cell , 1980 .

[143]  Y. Meng,et al.  Understanding Na₂Ti₃O₇ as an ultra-low voltage anode material for a Na-ion battery. , 2014, Chemical communications.

[144]  Kristina Edström,et al.  The cathode-electrolyte interface in the Li-ion battery , 2004 .

[145]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[146]  B. Lucht,et al.  Generation of Cathode Passivation Films via Oxidation of Lithium Bis(oxalato) Borate on High Voltage Spinel (LiNi0.5Mn1.5O4) , 2014 .

[147]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[148]  Fredrik J. Lindgren,et al.  Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide , 2014 .

[149]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[150]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[151]  Y. S. Lee,et al.  A new type of orthorhombic LiFeO2 with advanced battery performance and its structural change during cycling , 2003 .

[152]  K. Kubota,et al.  Sodium and Manganese Stoichiometry of P2-Type Na2/3 MnO2. , 2016, Angewandte Chemie.

[153]  M. Schlesinger,et al.  Alloy phase diagrams , 2016 .

[154]  Mark N. Obrovac,et al.  Reversible Insertion of Sodium in Tin , 2012 .

[155]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[156]  K. Kang,et al.  Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems , 2015 .

[157]  Y. Takeda,et al.  Synthesis, Structure, and Electrochemical Properties of a New Lithium Iron Oxide, LiFeO2, with a Corrugated Layer Structure , 1996 .

[158]  Yun Jung Lee,et al.  Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. , 2013, ACS applied materials & interfaces.

[159]  Akira Yoshino,et al.  Die Geburt der Lithiumionen‐Batterie , 2012 .

[160]  Junyang Li,et al.  Synthesis, crystal structure and electrochemical properties of LiFePO4F cathode material for Li-ion batteries , 2014 .

[161]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[162]  J. Gim,et al.  Fully activated Li2MnO3 nanoparticles by oxidation reaction , 2012 .

[163]  Kai Zhang,et al.  Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries , 2015, Advanced materials.

[164]  Philipp Adelhelm,et al.  From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries , 2015, Beilstein journal of nanotechnology.

[165]  S. Jung,et al.  Atom-Level Understanding of the Sodiation Process in Silicon Anode Material. , 2014, The journal of physical chemistry letters.

[166]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[167]  Jung-Ki Park Principles and Applications of Lithium Secondary Batteries: PARK:LI BATTERIES O-BK , 2012 .

[168]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[169]  J. Tarascon,et al.  Rationalization of Intercalation Potential and Redox Mechanism for A2Ti3O7 (A = Li, Na) , 2013 .

[170]  Juchuan Li,et al.  Whisker formation on a thin film tin lithium-ion battery anode , 2011 .

[171]  A. Yamada,et al.  Phase Diagram of Olivine NaxFePO4 (0 < x < 1) , 2013 .

[172]  J. Janek,et al.  Kinetics and Degradation Processes of CuO as Conversion Electrode for Sodium-Ion Batteries: An Electrochemical Study Combined with Pressure Monitoring and DEMS , 2017 .