Mobile genetic elements from the maternal microbiome shape infant gut microbial assembly and metabolism

[1]  Stephanie L. Servetas,et al.  Enhancing untargeted metabolomics using metadata-based source annotation , 2022, Nature Biotechnology.

[2]  H. Siljander,et al.  Effect of Early Feeding on Intestinal Permeability and Inflammation Markers in Infants with Genetic Susceptibility to Type 1 Diabetes: A Randomized Clinical Trial. , 2021, The Journal of pediatrics.

[3]  William W. Van Treuren,et al.  A metabolomics pipeline for the mechanistic interrogation of the gut microbiome , 2021, Nature.

[4]  Sean M. Kearney,et al.  Elevated rates of horizontal gene transfer in the industrialized human microbiome , 2021, Cell.

[5]  R. Geha,et al.  Multi-kingdom ecological drivers of microbiota assembly in preterm infants , 2021, Nature.

[6]  Timothy L. Tickle,et al.  Multivariable association discovery in population-scale meta-omics studies , 2021, bioRxiv.

[7]  J. Segre,et al.  Infection trains the host for microbiota-enhanced resistance to pathogens , 2021, Cell.

[8]  Mona Singh,et al.  Metabolite discovery through global annotation of untargeted metabolomics data , 2021, Nature Methods.

[9]  N. Kyrpides,et al.  CheckV assesses the quality and completeness of metagenome-assembled viral genomes , 2020, Nature Biotechnology.

[10]  M. Yassour,et al.  Delivery Mode Affects Stability of Early Infant Gut Microbiota , 2020, Cell reports. Medicine.

[11]  Juho Rousu,et al.  Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra , 2020, Nature Biotechnology.

[12]  P. Manghi,et al.  Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3 , 2020, bioRxiv.

[13]  J. German,et al.  Bifidobacteria-mediated immune system imprinting early in life , 2020, Cell.

[14]  Sebastian Gibb,et al.  MSnbase, efficient and elegant R-based processing and visualisation of raw mass spectrometry data , 2020, bioRxiv.

[15]  E. Hsiao,et al.  The maternal microbiome modulates fetal neurodevelopment in mice , 2020, Nature.

[16]  K. McCoy,et al.  Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy , 2020, Science.

[17]  B. Finlay,et al.  Breastmilk Feeding Practices Are Associated with the Co-Occurrence of Bacteria in Mothers' Milk and the Infant Gut: the CHILD Cohort Study. , 2020, Cell host & microbe.

[18]  G. Marsche,et al.  An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System , 2020, International journal of molecular sciences.

[19]  A. Kondo,et al.  Effective bifidogenic growth factors cyclo-Val-Leu and cyclo-Val-Ile produced by Bacillus subtilis C-3102 in the human colonic microbiota model , 2020, Scientific Reports.

[20]  J. Paulson,et al.  Siglecs as Immune Cell Checkpoints in Disease. , 2020, Annual review of immunology.

[21]  K. Ng,et al.  Klebsiella michiganensis transmission enhances resistance to Enterobacteriaceae gut invasion by nutrition competition , 2020, Nature Microbiology.

[22]  Andrew C. Tolonen,et al.  Growth effects of N-acylethanolamines on gut bacteria reflect altered bacterial abundances in Inflammatory Bowel Disease , 2019, Nature Microbiology.

[23]  W. D. de Vos,et al.  The Gut Microbiota in the First Decade of Life. , 2019, Trends in microbiology.

[24]  Donovan H Parks,et al.  GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database , 2019, Bioinform..

[25]  B. Stahl,et al.  Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. , 2019, Prostaglandins, leukotrienes, and essential fatty acids.

[26]  Alexander R. Pico,et al.  Cytoscape Automation: empowering workflow-based network analysis , 2019, Genome Biology.

[27]  Juho Rousu,et al.  SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information , 2019, Nature Methods.

[28]  Feng Li,et al.  MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies , 2019, PeerJ.

[29]  D. Schleheck,et al.  A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia , 2019, Proceedings of the National Academy of Sciences.

[30]  Philipp C. Münch,et al.  Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life , 2018, Nature Microbiology.

[31]  C. Huttenhower,et al.  Gut microbiome structure and metabolic activity in inflammatory bowel disease , 2018, Nature Microbiology.

[32]  Davide Heller,et al.  eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses , 2018, Nucleic Acids Res..

[33]  The UniProt Consortium,et al.  UniProt: a worldwide hub of protein knowledge , 2018, Nucleic Acids Res..

[34]  R. Gibbs,et al.  Temporal development of the gut microbiome in early childhood from the TEDDY study , 2018, Nature.

[35]  Luke R. Thompson,et al.  Species-level functional profiling of metagenomes and metatranscriptomes , 2018, Nature Methods.

[36]  F. Tinahones,et al.  Gut Microbiota Differs in Composition and Functionality Between Children With Type 1 Diabetes and MODY2 and Healthy Control Subjects: A Case-Control Study , 2018, Diabetes Care.

[37]  Ole Lund,et al.  Rapid and precise alignment of raw reads against redundant databases with KMA , 2018, BMC Bioinformatics.

[38]  J. Mikes,et al.  Stereotypic Immune System Development in Newborn Children , 2018, Cell.

[39]  H. Sokol,et al.  Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice , 2018, Nature Communications.

[40]  Duy Tin Truong,et al.  Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome , 2018, Cell host & microbe.

[41]  M. Yassour,et al.  Strain-Level Analysis of Mother-to-Child Bacterial Transmission during the First Few Months of Life. , 2018, Cell host & microbe.

[42]  J. Versalovic,et al.  Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice , 2018, PloS one.

[43]  M. Trivella,et al.  Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis , 2018, PLoS medicine.

[44]  J. Orange,et al.  Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans , 2017, Pediatrics.

[45]  Duy Tin Truong,et al.  Microbial strain-level population structure and genetic diversity from metagenomes , 2017, Genome research.

[46]  C. Huttenhower,et al.  Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity , 2016, Cell.

[47]  Evan Bolton,et al.  ClassyFire: automated chemical classification with a comprehensive, computable taxonomy , 2016, Journal of Cheminformatics.

[48]  J. M. Rodríguez,et al.  Streptococcal Diversity of Human Milk and Comparison of Different Methods for the Taxonomic Identification of Streptococci , 2016, Journal of human lactation : official journal of International Lactation Consultant Association.

[49]  Duy Tin Truong,et al.  Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling , 2016, mSystems.

[50]  Kristian Fog Nielsen,et al.  Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking , 2016, Nature Biotechnology.

[51]  Daniel B. DiGiulio,et al.  A microbial perspective of human developmental biology , 2016, Nature.

[52]  A. Tauch,et al.  A microbiological and clinical review on Corynebacterium kroppenstedtii. , 2016, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[53]  N. Salem,et al.  The Essentiality of Arachidonic Acid in Infant Development , 2016, Nutrients.

[54]  R. Bergman,et al.  Metabolic effects of eradicating breath methane using antibiotics in prediabetic subjects with obesity , 2016, Obesity.

[55]  Michael J. Barratt,et al.  Sialylated Milk Oligosaccharides Promote Microbiota-Dependent Growth in Models of Infant Undernutrition , 2016, Cell.

[56]  Yanjiao Zhou,et al.  Early life dynamics of the human gut virome and bacterial microbiome in infants , 2015, Nature Medicine.

[57]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[58]  Danielle G. Lemay,et al.  Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants , 2015, Microbiome.

[59]  Shan-shan Geng,et al.  Fecal Calprotectin Concentrations in Healthy Children Aged 1-18 Months , 2015, PloS one.

[60]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[61]  Laurie E. Comstock,et al.  Evidence of Extensive DNA Transfer between Bacteroidales Species within the Human Gut , 2014, mBio.

[62]  J. Ilonen,et al.  Patterns of β-Cell Autoantibody Appearance and Genetic Associations During the First Years of Life , 2013, Diabetes.

[63]  Bernard Henrissat,et al.  Effects of Diet on Resource Utilization by a Model Human Gut Microbiota Containing Bacteroides cellulosilyticus WH2, a Symbiont with an Extensive Glycobiome , 2013, PLoS biology.

[64]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[65]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[66]  Natalie I. Tasman,et al.  A Cross-platform Toolkit for Mass Spectrometry and Proteomics , 2012, Nature Biotechnology.

[67]  Yunwei Wang,et al.  Dietary fat-induced taurocholic acid production promotes pathobiont and colitis in IL-10−/− mice , 2012, Nature.

[68]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[69]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[70]  V. Viallon,et al.  Fecal Expression of Human β-Defensin-2 following Birth , 2010, Neonatology.

[71]  Daniel B. DiGiulio,et al.  Development of the Human Infant Intestinal Microbiota , 2007, PLoS biology.

[72]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[73]  K. Yuen,et al.  Bacteraemia caused by Anaerotruncus colihominis and emended description of the species , 2006, Journal of Clinical Pathology.

[74]  A. Feller,et al.  Human β-defensin 2 but not β-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease , 2002 .

[75]  E. Goetzl,et al.  Lysophospholipids and their G protein-coupled receptors in inflammation and immunity. , 2002, Biochimica et biophysica acta.

[76]  H. Schjønsby,et al.  Improved assay for fecal calprotectin. , 2000, Clinica chimica acta; international journal of clinical chemistry.

[77]  J. Madsen,et al.  Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[78]  P. Hill,et al.  Rapid Enzymatic Method for the Measurement of Mannitol in Urine , 1991, Annals of clinical biochemistry.

[79]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[80]  P. Lunn,et al.  Automated enzymatic assays for the determination of intestinal permeability probes in urine. 1. Lactulose and lactose. , 1990, Clinica chimica acta; international journal of clinical chemistry.

[81]  Eugene W. Myers,et al.  Optimal alignments in linear space , 1988, Comput. Appl. Biosci..

[82]  W. Walker,et al.  Breast milk, microbiota, and intestinal immune homeostasis , 2015, Pediatric Research.

[83]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[84]  V. Tremaroli,et al.  Resource Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life Graphical Abstract Highlights , 2022 .

[85]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .