Confidence curves and improved exact confidence intervals for discrete distributions

The author describes a method for improving standard “exact” confidence intervals in discrete distributions with respect to size while retaining correct level. The binomial, negative binomial, hypergeometric, and Poisson distributions are considered explicitly. Contrary to other existing methods, the author's solution possesses a natural nesting condition: if α < α', the 1 - α' confidence interval is included in the 1 - α interval. Nonparametric confidence intervals for a quantile are also considered.

[1]  Allan Birnbaum,et al.  Confidence Curves: An Omnibus Technique for Estimation and Testing Statistical Hypotheses , 1961 .

[2]  Tommy Wright Exact Confidence Bounds when Sampling from Small Finite Universes: An Easy Reference Based on the Hypergeometric Distribution , 1991 .

[3]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[4]  Edwin L. Crow,et al.  CONFIDENCE INTERVALS FOR A PROPORTION , 1956 .

[5]  K. Lui Confidence limits for the population prevalence rate based on the negative binomial distribution. , 1995, Statistics in medicine.

[6]  T. E. Sterne,et al.  Some remarks on confidence or fiducial limits , 1954 .

[7]  F. Garwood,et al.  i) Fiducial Limits for the Poisson Distribution , 1936 .

[8]  J. Angus,et al.  Improved Confidence Statements for the Binomial Parameter , 1984 .

[9]  C. Blyth,et al.  Binomial Confidence Intervals , 1983 .

[10]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[11]  George Casella,et al.  Refining binomial confidence intervals , 1986 .

[12]  H. Chernoff A Property of some Type a Regions , 1951 .

[13]  Jean D. Gibbons,et al.  P-values: Interpretation and Methodology , 1975 .

[14]  Christian P. Robert,et al.  Refining Poisson Confidence Intervals , 1988 .

[15]  E. S. Pearson,et al.  THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .

[16]  S E Vollset,et al.  Confidence intervals for a binomial proportion. , 1994, Statistics in medicine.

[17]  J. Buonaccorsi A Note on Confidence Intervals for Proportions in Finite Populations , 1987 .

[18]  Kishor S. Trivedi,et al.  A COMPARISON OF APPROXIMATE INTERVAL ESTIMATORS FOR THE BERNOULLI PARAMETER , 1993 .

[19]  E. Crow,et al.  CONFIDENCE INTERVALS FOR THE EXPECTATION OF A POISSON VARIABLE , 1959 .