Multi-Nets. Classification of Discrete and Smooth Surfaces with Characteristic Properties on Arbitrary Parameter Rectangles

We investigate the common underlying discrete structures for various smooth and discrete nets. The main idea is to impose the characteristic properties of the nets not only on elementary quadrilaterals but also on arbitrary parameter rectangles. For discrete planar quadrilateral nets, circular nets, $$Q^*$$ Q ∗ -nets and conical nets we obtain a characterization of the corresponding discrete multi -nets. In the limit these discrete nets lead to some classical classes of smooth surfaces. Furthermore, we propose to use the characterized discrete nets as discrete extensions for the nets to obtain structure preserving subdivision schemes.

[1]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[2]  E. T. Davies,et al.  Projektive Differentialgeometrie. II , 1951, The Mathematical Gazette.

[3]  M. Kilian,et al.  Circular arc structures , 2011, SIGGRAPH 2011.

[4]  Johannes Wallner,et al.  Geometric modeling with conical meshes and developable surfaces , 2006, SIGGRAPH 2006.

[5]  U. Hertrich-Jeromin Introduction to Möbius differential geometry , 2003 .

[6]  Philipp Grohs,et al.  Smoothness Analysis of Subdivision Schemes on Regular Grids by Proximity , 2008, SIAM J. Numer. Anal..

[7]  P. Santini,et al.  Multidimensional quadrilateral lattices are integrable , 1996, solv-int/9612007.

[8]  D. Matthes,et al.  Discrete and smooth orthogonal systems: $C^\infty$-approximation , 2003 .

[9]  Olivier Baverel,et al.  Isoradial meshes: Covering elastic gridshells with planar facets , 2017 .

[10]  Alexander I. Bobenko,et al.  Curvature line parametrized surfaces and orthogonal coordinate systems: discretization with Dupin cyclides , 2011, Geometriae Dedicata.

[11]  Caiming Zhang,et al.  Surface fitting with cyclide splines , 2016, Comput. Aided Geom. Des..

[12]  A. Bobenko,et al.  Supercyclidic nets , 2014, 1412.7422.

[13]  Johannes Wallner,et al.  Designing Quad‐dominant Meshes with Planar Faces , 2010, Comput. Graph. Forum.

[14]  Johannes Wallner,et al.  A curvature theory for discrete surfaces based on mesh parallelity , 2009, 0901.4620.

[15]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[16]  Mark Pauly,et al.  Shape‐Up: Shaping Discrete Geometry with Projections , 2012, Comput. Graph. Forum.

[17]  A. Bobenko,et al.  Discrete Differential Geometry: Integrable Structure , 2008 .

[18]  David I. W. Levin,et al.  Perception-aware modeling and fabrication of digital drawing tools , 2018, ACM Trans. Graph..

[19]  Ang Yan Sheng,et al.  Discrete Differential Geometry , 2017 .

[20]  Ofir Weber,et al.  Canonical Möbius subdivision , 2018, ACM Trans. Graph..

[21]  Thilo Rörig,et al.  Discretization of asymptotic line parametrizations using hyperboloid surface patches , 2011, Geometriae Dedicata.

[22]  Wendelin L. F. Degen Nets with Plane Silhouettes , 1992, IMA Conference on the Mathematics of Surfaces.

[23]  D. Matthes,et al.  Discrete and smooth orthogonal systems: C∞-approximation , 2003 .

[24]  Young J. Kim,et al.  Interactive generalized penetration depth computation for rigid and articulated models using object norm , 2014, ACM Trans. Graph..

[25]  W. Blaschke Vorlesungen über Differentialgeometrie , 1912 .

[26]  A. Bobenko,et al.  Isothermic surfaces in sphere geometries as Moutard nets , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.