Limits for the Firehose Instability in Space Plasmas

Electromagnetic instabilities in high-β plasmas, where β is the ratio of the kinetic plasma energy to the magnetic energy, have a broad range of astrophysical applications. The presence of temperature anisotropies T∥/T⊥>1 (where ∥ and ⊥ denote directions relative to the background magnetic field) in solar flares and the solar wind is sustained by the observations and robust acceleration mechanisms that heat plasma particles in the parallel direction. The surplus of parallel kinetic energy can excite either the Weibel-like instability (WI) of the ordinary mode perpendicular to the magnetic field or the firehose instability (FHI) of the circularly polarized waves at parallel propagation. The interplay of these two instabilities is examined. The growth rates and the thresholds provided by the kinetic Vlasov – Maxwell theory are compared. The WI is the fastest growing one with a growth rate that is several orders of magnitude larger than that of the FHI. These instabilities are however inhibited by the ambient magnetic field by introducing a temperature anisotropy threshold. The WI admits a larger anisotropy threshold, so that, under this threshold, the FHI remains the principal mechanism of relaxation. The criteria provided here by describing the interplay of the WI and FHI are relevant for the existence of these two instabilities in any space plasma system characterized by an excess of parallel kinetic energy.

[1]  James A. Miller Particle Acceleration in Impulsive Solar Flares , 1998 .

[2]  H. Fahr,et al.  Anisotropic unstable ion distribution functions downstream of the solar wind termination shock , 2007 .

[3]  S. Hamasaki ELECTROMAGNETIC MICROINSTABILITIES OF PLASMAS IN A UNIFORM MAGNETIC INDUCTION. , 1968 .

[4]  S. Peter Gary,et al.  Theory of Space Plasma Microinstabilities , 1993 .

[5]  R. Schlickeiser,et al.  Counterstreaming magnetized plasmas. I. Parallel wave propagation , 2005 .

[6]  Burton D. Fried,et al.  The Plasma Dispersion Function , 1961 .

[7]  James A. Miller Magnetohydrodynamic turbulence dissipation and stochastic proton acceleration in solar flares , 1991 .

[8]  Markus J. Aschwanden Physics of the Solar Corona , 2004 .

[9]  Stephen G. Benka,et al.  Critical issues for understanding particle acceleration in impulsive solar flares , 1997 .

[10]  E. S. Weibel,et al.  Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution , 1959 .

[11]  E. Marsch Kinetic Physics of the Solar Corona and Solar Wind , 2006 .

[12]  D. Burgess,et al.  Electron firehose instability: Kinetic linear theory and two‐dimensional particle‐in‐cell simulations , 2008 .

[13]  James A. Miller,et al.  Electron Acceleration in Solar Flares by Fast-Mode Waves: Coulomb Collisions , 1998 .

[14]  Stefaan Poedts,et al.  Firehose instability in space plasmas with bi-kappa distributions , 2009 .

[15]  M. Maksimović,et al.  Electron temperature anisotropy constraints in the solar wind , 2008 .

[16]  G. S. Vaiana,et al.  A survey of soft X-ray limb flare images: the relation between their structure in the corona and other physical parameters. , 1977 .

[17]  Burton D. Fried,et al.  Mechanism for Instability of Transverse Plasma Waves , 1959 .

[18]  L. Fisk The acceleration of energetic particles in the interplanetary medium by transit-time damping , 1976 .

[19]  R. Schlickeiser,et al.  Counterstreaming magnetized plasmas. II. Perpendicular wave propagation , 2006 .

[20]  R. Davidson,et al.  ORDINARY-MODE ELECTROMAGNETIC INSTABILITY IN HIGH-$beta$ PLASMAS. , 1970 .

[22]  Daan Hubert,et al.  Electron Properties and Coulomb Collisions in the Solar Wind at 1 AU: Wind Observations , 2001 .

[23]  H. Hudson,et al.  Impulsive Phase Flare Energy Transport by Large-Scale Alfvén Waves and the Electron Acceleration Problem , 2007, 0712.3452.

[24]  H. Völk,et al.  New plasma instabilities in the solar wind , 1970 .

[25]  S. Gary,et al.  Resonant electron firehose instability: Particle-in-cell simulations , 2003 .

[26]  P. Judge,et al.  Alfvén Waves in the Solar Corona , 2007, Science.

[27]  James A. Miller Electron Acceleration in Solar Flares by Fast Mode Waves: Quasi-linear Theory and Pitch-Angle Scattering , 1997 .

[28]  A. Benz,et al.  Test particle simulation of the Electron Firehose instability , 2003 .

[29]  K. Shibasaki,et al.  Evidence for Alfvén Waves in Solar X-ray Jets , 2007, Science.

[30]  B. Shizgal Suprathermal particle distributions in space physics: Kappa distributions and entropy , 2007 .

[31]  D. Summers,et al.  Formation of power‐law energy spectra in space plasmas by stochastic acceleration due to whistler‐mode waves , 1998, physics/9810049.

[32]  S. Habbal,et al.  Electron kinetic firehose instability , 2000 .

[33]  H. Rosenbauer,et al.  Characteristics of electron velocity distribution functions in the solar wind derived from the helios plasma experiment , 1987 .

[34]  M. Leubner Wave induced suprathermal tail generation of electron velocity space distributions , 2000 .

[35]  H. Rosenbauer,et al.  Solar wind protons: Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU , 1982 .

[36]  I. Lerche,et al.  On the Physical Realization of Two-dimensional Turbulence Fields in Magnetized Interplanetary Plasmas , 2006 .