Computing integral points in convex semi-algebraic sets

Let Y be a convex set in R/sup k/ defined by polynomial inequalities and equations of degree at most d/spl ges/2 with integer coefficients of binary length l. We show that if Y/spl cap/Z/sup k//spl ne//spl theta/, then Y contains an integral point of binary length ld/sup O/((k/sup 4/)). For fixed k, our bound implies a polynomial-time algorithm for computing an integral point y/spl isin/Y. In particular, we extend Lenstra's theorem on the polynomial-time solvability of linear integer programming in fixed dimension to semidefinite integer programming.

[1]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[2]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[3]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[4]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[5]  George E. Collins Polynomial Remainder Sequences and Determinants , 1966 .

[6]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[7]  James Renegar,et al.  On the Computational Complexity of Approximating Solutions for Real Algebraic Formulae , 1992, SIAM J. Comput..

[8]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of quantifier elimination , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[9]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[10]  M. Mignotte Some Useful Bounds , 1983 .

[11]  Kenneth J. Giuliani Factoring Polynomials with Rational Coeecients , 1998 .

[12]  S. R. Czapor,et al.  Computer Algebra , 1983, Computing Supplementa.

[13]  Teresa Krick,et al.  A Gemometrical Bound for Integer Programming with Polynomial Constraints , 1991, FCT.

[14]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[15]  Alexander I. Barvinok,et al.  A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed , 1993, FOCS.

[16]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[17]  Bruno Buchberger Computer algebra: symbolic and algebraic computation, 2nd Edition , 1983 .