Piecewise monotone spline interpolation
暂无分享,去创建一个
Abstract Let ( x i , y i ), i = 0, 1,…, k , be a set of points, with x 0 x 1 x k . We prove the existence of a spline function of specified deficiency, f ( x ), which satisfies f ( x i ) = y i , i = 0, 1,…, k , and which is monotone on each of the intervals [ x i − 1 , x i ], i = 1, 2,…, k .
[1] Z. Rubinstein. On polynomial δ-type functions and approximation by monotonic polynomials , 1970 .
[2] W. Wolibner,et al. Sur un polynôme d'interpolation , 1951 .
[3] Sam W. Young. Piecewise monotone polynomial interpolation , 1967 .
[4] J. L. Walsh,et al. The theory of splines and their applications , 1969 .