Multiple air-gap filters and constricted mesa lasers – material processing meets the front of optical device technology

Real three-dimensional material structures enable enormous perspectives in the functionality of advanced electronic and optoelectronic III/V semiconductor devices. We report on the technological implementation of surface-micromachined III/V semiconductor devices for optoelectronic applications. Considering fabrication technology, the general principles can be reduced to three fundamental process steps: deposition of a layered heterostructure on a substrate, vertical structurization and horizontal undercutting by selectively removing sacrificial layers. Very useful quality-control elements for precise process control are presented. The basic principles are applied and illustrated in detail by presenting two selected optoelectronic examples. (i) The fabrication technology of buried mushroom stripe lasers is shown. Bent waveguides on homogeneous grating fields are used to obtain chirped gratings, enabling a high potential to tailor specific performances. Excellent optical properties are obtained. (ii) The fabrication technology of vertical optical cavity based tunable single- or multi-membrane devices including air gaps is shown. Record optical tuning characteristics for vertical cavity Fabry–Pérot filters are presented. Single parametric wavelength tuning over 142 nm with an actuation voltage of only 3.2 V is demonstrated.

[1]  Ivo W. Rangelow,et al.  Dry etching-based silicon micro-machining for MEMS , 2001 .

[2]  James N. Walpole,et al.  A novel technique for GaInAsP/InP buried heterostructure laser fabrication , 1982 .

[3]  H. Hillmer,et al.  Strain-balanced {AlGaInAs}/{InP} heterostructures with up to 50 QWs by MBE , 1997 .

[4]  S. Wu,et al.  A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems , 2000, IEEE Photonics Technology Letters.

[5]  P. Viktorovitch,et al.  Tunable InP/air gap Fabry Perot filter for wavelength division multiplex fiber optical transmission , 1999, Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM'99) (Cat. No.99CH36362).

[6]  H. Hillmer,et al.  Study of wavelength shift in InGaAs/InAlGaAs QW DFB lasers based on laser parameters from a comparison of experiment and theory , 1994 .

[7]  C.J. Chang-Hasnain,et al.  Tunable VCSEL , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  Juergen Daleiden,et al.  Ultrawide continuously tunable 1.55-μm vertical-air-cavity filters and VCSELs based on micromachined electrostatic actuation , 2002, SPIE OPTO.

[9]  S S Lee,et al.  Realization of novel monolithic free-space optical disk pickup heads by surface micromachining. , 1996, Optics letters.

[10]  G. Guillot,et al.  Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications , 1998, IEEE Photonics Technology Letters.

[11]  H. Hillmer,et al.  A novel low-cost tunable dielectric air-gap filter , 2002, IEEE/LEOS International Conference on Optical MEMs.

[12]  Hartmut Hillmer,et al.  MBE grown strain-compensated AlGaInAs/AlGaInAs/InP MQW laser structures , 1995 .

[13]  J.S. Harris,et al.  Broadly-tunable resonant-cavity light-emitting diode , 1995, IEEE Photonics Technology Letters.

[14]  K. Mutamba,et al.  Two-chip InGaAs-InP Fabry-Perot p-i-n receiver for WDM systems , 1999, IEEE Photonics Technology Letters.

[15]  John E. Bowers,et al.  High-frequency constricted mesa lasers , 1985 .

[16]  F. Römer,et al.  Potential for micromachined actuation of ultra-wide continuously tunable optoelectronic devices , 2002 .

[17]  K. Streubel,et al.  Monolithic InP-biased tunable filter with 10-nm bandwidth for optical data interconnects in the 1550-nm band , 1999, IEEE Photonics Technology Letters.

[18]  Martin Strassner,et al.  Tuning efficiency and linewidth of electrostatically actuated multiple air-gap filters , 2003 .

[19]  H. Hillmer,et al.  Ultralow biased widely continuously tunable fabry-Perot filter , 2003, IEEE Photonics Technology Letters.

[20]  J. Söderkvist,et al.  High-sensitivity surface micromachined structures for internal stress and stress gradient evaluation , 1997 .

[21]  Yasuharu Suematsu,et al.  1.54‐μm phase‐adjusted InGaAsP/InP distributed feedback lasers with mass‐transported windows , 1985 .

[22]  R. Muller,et al.  Optoelectronic packaging using silicon surface-micromachined alignment mirrors , 1995, IEEE Photonics Technology Letters.

[23]  Hartmut Hillmer,et al.  Novel tunable semiconductor lasers using continuously chirped distributed feedback gratings with ultrahigh spatial precision , 1994 .

[24]  Thomas Kuhn,et al.  Carrier and photon dynamics in transversally asymmetric high-speed AlGaAs/InP MQW lasers , 1996, Photonics West.

[25]  M. Mehregany,et al.  Micro-opto-mechanical devices fabricated by anisotropic etching of (110) silicon , 1995 .

[26]  Ming C. Wu,et al.  Linearization of electrostatically actuated surface micromachined 2-D optical scanner , 2001 .

[27]  N. D. Rooij,et al.  Micro-opto-mechanical 2/spl times/2 switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation , 1999 .

[28]  C. Chang-Hasnain,et al.  Tunable micromachined vertical cavity surface emitting laser , 1995 .

[29]  R. Tkach,et al.  Free-space micromachined optical switches with submillisecond switching time for large-scale optical crossconnects , 1998, IEEE Photonics Technology Letters.

[30]  M. Tilsch,et al.  Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter , 1997, IEEE Photonics Technology Letters.

[31]  H. Tilmans Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems , 1996 .

[32]  A. Rogner,et al.  Fabrication of stepped microoptical benches for fibre and free space applications , 1996 .

[33]  M. Mehregany,et al.  Hybrid-integrated laser-diode micro-external mirror fabricated by [110] silicon micromachining , 1995 .

[34]  R. Bhat,et al.  Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range , 1997, IEEE Photonics Technology Letters.

[35]  Continuously distributed phase shifts by chirped distributed-feedback gratings for 1.55 μm distributed-feedback lasers , 1997 .

[36]  Hartmut Hillmer,et al.  Semiconductor lasers for high-bit-rate optical data transmission: investigations to increase the yield of laser arrays , 1999, Other Conferences.

[37]  R. Muller,et al.  Surface-micromachined mirrors for laser-beam positioning , 1996 .

[38]  E. Oesterschulze Novel probes for scanning probe microscopy , 1998 .

[39]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[40]  G. Tränkle,et al.  Sidewall slope control of chemically assisted ion-beam etched structures in InP-based materials , 1998 .

[41]  M. S. Unlu,et al.  Tunable photodetectors and light-emitting diodes for wavelength division multiplexing , 1995 .

[42]  G. Shao,et al.  An efficient room-temperature silicon-based light-emitting diode , 2001, Nature.

[43]  Hartmut Hillmer,et al.  Tailored DFB laser properties by individually chirped gratings using bent waveguides , 1995 .

[44]  M. Strassner,et al.  Quantitative evaluation of growth-induced residual stress in InP epitaxial micromechanical structures , 2000 .

[45]  Jiangtao Zhou,et al.  2 mW CW single-mode operation of a tunable 1550 nm vertical cavity surface emitting laser with 50 nm tuning range , 1999 .

[46]  Michael C. Larson,et al.  Continuously tunable micromachined vertical cavity surface emitting laser with 18 nm wavelength range , 1996 .

[47]  R. Howe,et al.  Critical Review: Adhesion in surface micromechanical structures , 1997 .

[48]  H. Hillmer,et al.  Record tuning range of InP-based multiple air-gap MOEMS filter , 2002 .

[49]  Hartmut Hillmer,et al.  Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory , 1994 .

[50]  Hartmut Hillmer,et al.  Investigations of thermal crosstalk in laser arrays for WDM applications , 1998 .

[51]  R. Muller,et al.  Laser-to-fiber coupling module using a micromachined alignment mirror , 1995, IEEE Photonics Technology Letters.

[52]  C. Chang-Hasnain,et al.  Top-emitting micromechanical VCSEL with a 31.6-nm tuning range , 1998, IEEE Photonics Technology Letters.

[53]  M. Strassner,et al.  Room-temperature operation of photopumped monolithic InP vertical-cavity laser with two air-gap Bragg reflectors , 2001 .

[54]  V. Jayaraman,et al.  Continuous-wave operation of single-transverse-mode 1310-nm VCSELs up to 115/spl deg/C , 2000, IEEE Photonics Technology Letters.

[55]  James S. Harris,et al.  SIMULTANEOUS OPTIMIZATION OF MEMBRANE REFLECTANCE AND TUNING VOLTAGE FOR TUNABLE VERTICAL CAVITY LASERS , 1998 .

[56]  Ivo W. Rangelow,et al.  Electrostatically driven microgripper , 2002 .

[57]  C. Manz,et al.  Chemically-assisted ion-beam etching of (AIGa)As/GaAa: Lattice damage and removal by in-situ Cl 2 treatment , 1999 .

[58]  M.C. Wu,et al.  Surface-micromachined micro-XYZ stages for free-space microoptical bench , 1997, IEEE Photonics Technology Letters.

[59]  Douglas H. Werner,et al.  Accurate modelling of anti-resonant dipole antennas using the method of moments , 1999 .

[60]  S. S. Lee,et al.  Surface‐micromachined free‐space micro‐optical systems containing three‐dimensional microgratings , 1995 .

[61]  Ivo W. Rangelow,et al.  Dry etching with gas chopping without rippled sidewalls , 1999 .

[62]  C. Chang-Hasnain,et al.  GaAs micromachined widely tunable Fabry-Perot filters , 1995 .

[63]  P. Tayebati,et al.  Widely tunable Fabry-Perot filter using Ga(Al)As-AlOx deformable mirrors , 1998, IEEE Photonics Technology Letters.

[64]  M.C. Wu,et al.  Tunable three-dimensional solid Fabry-Perot etalons fabricated by surface-micromachining , 1996, IEEE Photonics Technology Letters.

[65]  H. Burkhard,et al.  Three- and four-layer LPE InGaAs(P) mushroom stripe lasers for λ = 1.30, 1.54, and 1.66 µm , 1985 .

[66]  K. Hjort,et al.  III-V semiconductor material for tunable Fabry-Perot filters for coarse and dense WDM systems , 2000 .

[67]  Ivo W. Rangelow,et al.  The application of secondary effects in high aspect ratio dry etching for the fabrication of MEMS , 2001 .

[68]  H. Hillmer,et al.  Chirped gratings for DFB laser diodes using bent waveguides , 1993, IEEE Photonics Technology Letters.

[69]  M. Larson,et al.  Vertical coupled-cavity microinterferometer on GaAs with deformable-membrane top mirror , 1995, IEEE Photonics Technology Letters.

[70]  Hartmut Hillmer,et al.  Continuously chirped DFB gratings by specially bent waveguides for tunable lasers , 1995 .