z ∼ 7 GALAXY CANDIDATES FROM NICMOS OBSERVATIONS OVER THE HDF-SOUTH AND THE CDF-SOUTH AND HDF-NORTH GOODS FIELDS

We use ∼88 arcmin2 of deep (≳26.5 mag at 5σ) NICMOS data over the two GOODS fields and the HDF-South to conduct a search for bright z ≳ 7 galaxy candidates. This search takes advantage of an efficient preselection over 58 arcmin2 of NICMOS H160-band data where only plausible z ≳ 7 candidates are followed up with NICMOS J110-band observations. ∼248 arcmin2 of deep ground-based near-infrared data (≳25.5 mag, 5σ) are also considered in the search. In total, we report 15 z850-dropout candidates over this area—7 of which are new to these search fields. Two possible z ∼ 9 J110-dropout candidates are also found, but seem unlikely to correspond to z ∼ 9 galaxies (given the estimated contamination levels). The present z ∼ 9 search is used to set upper limits on the prevalence of such sources. Rigorous testing is undertaken to establish the level of contamination of our selections by photometric scatter, low-mass stars, supernovae, and spurious sources. The estimated contamination rate of our z ∼ 7 selection is ∼24%. Through careful simulations, the effective volume available to our z ≳ 7 selections is estimated and used to establish constraints on the volume density of luminous (L*z = 3, or ∼−21 mag) galaxies from these searches. We find that the volume density of luminous star-forming galaxies at z ∼ 7 is 13+8−5 times lower than at z ∼ 4 and >25 times lower (1σ) at z ∼ 9 than at z ∼ 4. This is the most stringent constraint yet available on the volume density of ≳L*z = 3 galaxies at z ∼ 9. The present wide-area, multi-field search limits cosmic variance to ≲20%. The evolution we find at the bright end of the UV LF is similar to that found from recent Subaru Suprime-Cam, HAWK-I or ERS WFC3/IR searches. The present paper also includes a complete summary of our final z ∼ 7 z850-dropout sample (18 candidates) identified from all NICMOS observations to date (over the two GOODS fields, the HUDF, galaxy clusters).

[1]  Douglas Scott,et al.  The Hubble Space Telescope GOODS NICMOS Survey: Overview and the Evolution of Massive Galaxies at 1.5 < z < 3 , 2010, 1010.1164.

[2]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[3]  M. Jarvis,et al.  Probing ∼L* Lyman‐break galaxies at z≈ 7 in GOODS‐South with WFC3 on Hubble Space Telescope , 2010 .

[4]  S. Wilkins,et al.  New Star Forming Galaxies at z\approx 7 from WFC3 Imaging , 2010, 1002.4866.

[5]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2010, 1001.4538.

[6]  C. Conselice,et al.  A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z ∼ 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY , 2010, 1001.3412.

[7]  H. Ferguson,et al.  ON THE STELLAR POPULATIONS AND EVOLUTION OF STAR-FORMING GALAXIES AT 6.3 < z ⩽ 8.6 , 2009, 0912.1338.

[8]  M. Nonino,et al.  The Great Observatories Origins Deep Survey ? VLT/ISAAC Near-Infrared Imaging of the GOODS-South Field , 2009, 0912.1306.

[9]  M. Franx,et al.  STAR FORMATION RATES AND STELLAR MASSES OF z = 7–8 GALAXIES FROM IRAC OBSERVATIONS OF THE WFC3/IR EARLY RELEASE SCIENCE AND THE HUDF FIELDS , 2009, 0911.1356.

[10]  M. Jarvis,et al.  Probing $\sim L_{*}$ Lyman-break Galaxies at $z\approx 7$ in GOODS-South with WFC3 on HST , 2009, 0910.1098.

[11]  M. Franx,et al.  ULTRADEEP INFRARED ARRAY CAMERA OBSERVATIONS OF SUB-L* z ∼ 7 AND z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD: THE CONTRIBUTION OF LOW-LUMINOSITY GALAXIES TO THE STELLAR MASS DENSITY AND REIONIZATION , 2009, 0910.0838.

[12]  R. O’Connell,et al.  Galaxy formation in the reionization epoch as hinted by wide field camera 3 observations of the hubble ultra deep field , 2009, 0910.0077.

[13]  M. Franx,et al.  VERY BLUE UV-CONTINUUM SLOPE β OF LOW LUMINOSITY z ∼ 7 GALAXIES FROM WFC3/IR: EVIDENCE FOR EXTREMELY LOW METALLICITIES? , 2009, 0910.0001.

[14]  Oxford,et al.  Constraints on star-forming galaxies at z≥ 6.5 from HAWK-I Y-band imaging of GOODS-South , 2009, 0909.4205.

[15]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[16]  Marijn Franx,et al.  THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.

[17]  F. Mannucci,et al.  Evidence for a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field , 2009, 0909.2853.

[18]  J. Dunlop,et al.  Galaxies at z = 6 - 9 from the WFC3/IR imaging of the HUDF , 2009, 0909.2437.

[19]  Mark Lacy,et al.  The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field , 2009, 0909.2255.

[20]  R. Bouwens,et al.  z ∼ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS , 2009, 0909.1806.

[21]  S. M. Fall,et al.  LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.

[22]  R. Bouwens,et al.  BRIGHT STRONGLY LENSED GALAXIES AT REDSHIFT z ∼ 6–7 BEHIND THE CLUSTERS ABELL 1703 AND CL0024+16 , 2009, 0903.3988.

[23]  M. Giavalisco,et al.  Expanding the search for galaxies at z ~7-10 with new NICMOS Parallel Fields , 2009, 0902.3245.

[24]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[25]  R. Bouwens,et al.  z ∼ 7–10 GALAXIES BEHIND LENSING CLUSTERS: CONTRAST WITH FIELD SEARCH RESULTS , 2008, 0805.0593.

[26]  A. Koekemoer,et al.  THE UDF05 FOLLOW-UP OF THE HUBBLE ULTRA DEEP FIELD. II. CONSTRAINTS ON REIONIZATION FROM Z-DROPOUT GALAXIES , 2008, 0804.4874.

[27]  Richard S. Ellis,et al.  A Hubble and Spitzer Space Telescope Survey for Gravitationally Lensed Galaxies: Further Evidence for a Significant Population of Low-Luminosity Galaxies beyond z = 7 , 2008, 0803.4391.

[28]  Garth D. Illingworth,et al.  z ~ 7-10 Galaxies in the HUDF and GOODS Fields: UV Luminosity Functions , 2008, 0803.0548.

[29]  M. Bremer,et al.  A limit on the number density of bright z ≈ 7 galaxies , 2008, 0801.4559.

[30]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.

[31]  M. Franx,et al.  Discovery of a Very Bright Strongly Lensed Galaxy Candidate at z ≈ 7.6 , 2007, 0802.2506.

[32]  A. Loeb,et al.  Light-cone distortion of the clustering and abundance of massive galaxies at high redshifts , 2007, 0711.2515.

[33]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[34]  NOAO,et al.  New Constraints on the Lyman Continuum Escape Fraction at z ~ 1.3 , 2007, 0706.4093.

[35]  H. Rix,et al.  The UDF05 Follow-up of the Hubble Ultra Deep Field. I. The Faint-End Slope of the Lyman Break Galaxy Population at z ~ 5 , 2007, 0706.2653.

[36]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[37]  P. P. van der Werf,et al.  NICMOS Imaging of DRGs in the HDF-S: A Relation between Star Formation and Size at z ~ 2.5 , 2006, astro-ph/0611245.

[38]  Toru Yamada,et al.  MOIRCS Deep Survey. I : DRG Number Counts , 2006, astro-ph/0610349.

[39]  R. Bouwens,et al.  Spitzer IRAC Confirmation of z850-Dropout Galaxies in the Hubble Ultra Deep Field: Stellar Masses and Ages at z ≈ 7 , 2006, astro-ph/0608444.

[40]  F. Mannucci,et al.  Evidence for strong evolution of the cosmic star formation density at high redshifts , 2006, astro-ph/0607143.

[41]  Garth D. Illingworth,et al.  Rapid evolution of the most luminous galaxies during the first 900 million years , 2006, Nature.

[42]  R. Bouwens,et al.  Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology , 2006, astro-ph/0605262.

[43]  R. Bouwens,et al.  Galaxies at z ~ 6: The UV Luminosity Function and Luminosity Density from 506 HUDF, HUDF Parallel ACS Field, and GOODS i-Dropouts , 2005, astro-ph/0509641.

[44]  Marcia J. Rieke,et al.  The Near-Infrared Camera and Multi-Object Spectrometer Ultra Deep Field: Observations, Data Reduction, and Galaxy Photometry , 2005 .

[45]  Rodger I. Thompson,et al.  The NICMOS Ultra Deep Field: Observations, Data Reduction, and Galaxy Photometry , 2005, astro-ph/0503504.

[46]  R. Windhorst,et al.  Candidates of z ≃ 5.5-7 Galaxies in the Hubble Space Telescope Ultra Deep Field , 2004, astro-ph/0407493.

[47]  M. Franx,et al.  Galaxy Size Evolution at High Redshift and Surface Brightness Selection Effects: Constraints from the Hubble Ultra Deep Field , 2004, astro-ph/0406562.

[48]  S. Ravindranath,et al.  The Hubble Higher z Supernova Search: Supernovae to z ≈ 1.6 and Constraints on Type Ia Progenitor Models , 2004, astro-ph/0406546.

[49]  R. McMahon,et al.  Near-infrared properties of i-drop galaxies in the Hubble Ultra Deep Field , 2004, astro-ph/0403585.

[50]  et al,et al.  Near-Infrared Photometry and Spectroscopy of L and T Dwarfs: The Effects of Temperature, Clouds, and Gravity , 2004, astro-ph/0402451.

[51]  S. M. Fall,et al.  The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging , 2003, astro-ph/0309105.

[52]  S. M. Fall,et al.  The Size Evolution of High-Redshift Galaxies , 2003, astro-ph/0309058.

[53]  Padova,et al.  Color-selected Galaxies at z ≈ 6 in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309070.

[54]  L. Moustakas,et al.  Cosmic Variance in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309071.

[55]  Massimo Stiavelli,et al.  The Hubble Ultra Deep Field , 2003, astro-ph/0607632.

[56]  P. P. van der Werf,et al.  Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts , 2002, astro-ph/0212236.

[57]  L. Kewley,et al.  The Chandra Deep Field-South: The 1 Million Second Exposure , 2001, astro-ph/0110452.

[58]  E. Feigelson,et al.  The Chandra Deep Survey of the Hubble Deep Field North Area. IV. An Ultradeep Image of the HDF-N , 2001, astro-ph/0102411.

[59]  P. Hewett,et al.  The Hubble Deep Field South: Formulation of the Observing Campaign , 2000 .

[60]  H. Ferguson,et al.  The Hubble Deep Fields , 2000, astro-ph/0004319.

[61]  A. J. Connolly,et al.  Simultaneous Multicolor Detection of Faint Galaxies in the Hubble Deep Field , 1998, astro-ph/9811086.

[62]  S. M. Fall,et al.  The Hubble Deep Field : proceedings of the Space Telescope Science Institute Symposium, held in Baltimore, Maryland, May 6-9, 1997 , 1998 .

[63]  ROBERT E. Williams,et al.  The Hubble Deep Field: Observations, data reduction, and galaxy photometry , 1996, astro-ph/9607174.

[64]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[65]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[66]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .

[67]  M. Rieke,et al.  Near-Infrared Camera and Multi-Object Spectrometer Observations of the Hubble Deep Field: Observations, Data Reduction, and Galaxy Photometry , 1999 .

[68]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[69]  M. Livio,et al.  Telescope: Evidence for past Deceleration and Constraints on Dark Energy Evolution , 2022 .