Two New Complete Genome Sequences Offer Insight into Host and Tissue Specificity of Plant Pathogenic Xanthomonas spp

ABSTRACT Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.

[1]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[2]  Jeff H. Chang,et al.  Genome sequencing and comparative analysis of the carrot bacterial blight pathogen, Xanthomonas hortorum pv. carotae M081, for insights into pathogenicity and applications in molecular diagnostics. , 2011, Molecular plant pathology.

[3]  C. Buell,et al.  Genomic Analysis of Xanthomonas oryzae Isolates from Rice Grown in the United States Reveals Substantial Divergence from Known X. oryzae Pathovars , 2011, Applied and Environmental Microbiology.

[4]  C. Manceau,et al.  A multilocus sequence analysis of Xanthomonas campestris reveals a complex structure within crucifer-attacking pathovars of this species. , 2011, Systematic and applied microbiology.

[5]  J. Setubal,et al.  Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper , 2011, BMC Genomics.

[6]  V. Barbe,et al.  Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads , 2011, BMC Evolutionary Biology.

[7]  P. Ronald,et al.  Secretion, modification, and regulation of Ax21. , 2011, Current opinion in microbiology.

[8]  Hanbo Chen,et al.  VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R , 2011, BMC Bioinformatics.

[9]  Jonathan D. G. Jones,et al.  Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. , 2010, FEMS microbiology letters.

[10]  U. Bonas,et al.  Xanthomonas AvrBs3 family-type III effectors: discovery and function. , 2010, Annual review of phytopathology.

[11]  A. Bogdanove,et al.  TAL effectors: finding plant genes for disease and defense. , 2010, Current opinion in plant biology.

[12]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[13]  R. Bourret,et al.  Two-component signal transduction. , 2010, Current opinion in microbiology.

[14]  Natalia N. Ivanova,et al.  A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea , 2009, Nature.

[15]  J. Gouzy,et al.  The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae , 2009, BMC Genomics.

[16]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[17]  Matthew J. Moscou,et al.  A Simple Cipher Governs DNA Recognition by TAL Effectors , 2009, Science.

[18]  P. Ronald,et al.  A Type I–Secreted, Sulfated Peptide Triggers XA21-Mediated Innate Immunity , 2009, Science.

[19]  F. White,et al.  Host and Pathogen Factors Controlling the Rice-Xanthomonas oryzae Interaction[C] , 2009, Plant Physiology.

[20]  R. Sonti,et al.  Multiple adhesin-like functions of Xanthomonas oryzae pv. oryzae are involved in promoting leaf attachment, entry, and virulence on rice. , 2009, Molecular plant-microbe interactions : MPMI.

[21]  J. M. Dow,et al.  Acquisition and Evolution of Plant Pathogenesis–Associated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas , 2008, PloS one.

[22]  J. Eisen,et al.  A simple, fast, and accurate method of phylogenomic inference , 2008, Genome Biology.

[23]  Ji-Liang Tang,et al.  A putative colR(XC1049)-colS(XC1050) two-component signal transduction system in Xanthomonas campestris positively regulates hrpC and hrpE operons and is involved in virulence, the hypersensitive response and tolerance to various stresses. , 2008, Research in microbiology.

[24]  D. Posada jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.

[25]  Dmitry A Rodionov,et al.  New Substrates for Tonb-dependent Transport: Do We Only See the 'tip of the Iceberg'? , 2022 .

[26]  J. M. Dow,et al.  Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A , 2008, BMC Genomics.

[27]  Georgios S. Vernikos,et al.  The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants , 2008, Genome Biology.

[28]  J. Schmid,et al.  The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. , 2008, Journal of biotechnology.

[29]  P. Ronald,et al.  The Xanthomonas oryzae pv. oryzae PhoPQ Two-Component System Is Required for AvrXA21 Activity, hrpG Expression, and Virulence , 2008, Journal of bacteriology.

[30]  D. Roby,et al.  AvrACXcc8004, a Type III Effector with a Leucine-Rich Repeat Domain from Xanthomonas campestris Pathovar campestris Confers Avirulence in Vascular Tissues of Arabidopsis thaliana Ecotype Col-0 , 2007, Journal of bacteriology.

[31]  C. Manceau,et al.  Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris , 2007 .

[32]  U. Bonas,et al.  New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. , 2007, Molecular plant-microbe interactions : MPMI.

[33]  D. Meyer,et al.  Plant Carbohydrate Scavenging through TonB-Dependent Receptors: A Feature Shared by Phytopathogenic and Aquatic Bacteria , 2007, PloS one.

[34]  Steven Salzberg,et al.  Identifying bacterial genes and endosymbiont DNA with Glimmer , 2007, Bioinform..

[35]  J. M. Dow,et al.  Cyclic di‐GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris , 2007, Molecular microbiology.

[36]  Ben Shneiderman,et al.  Hawkeye: an interactive visual analytics tool for genome assemblies , 2007, Genome Biology.

[37]  S. Salzberg,et al.  Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake , 2007, Genome Biology.

[38]  U. Jenal,et al.  Mechanisms of cyclic-di-GMP signaling in bacteria. , 2006, Annual review of genetics.

[39]  Xiaoyan Tang,et al.  Regulation of the type III secretion system in phytopathogenic bacteria. , 2006, Molecular plant-microbe interactions : MPMI.

[40]  U. Bonas,et al.  Specific Binding of the Xanthomonas campestris pv. vesicatoria AraC-Type Transcriptional Activator HrpX to Plant-Inducible Promoter Boxes , 2006, Journal of bacteriology.

[41]  J. Vicente,et al.  Identification of Isolates that Cause a Leaf Spot Disease of Brassicas as Xanthomonas campestris pv. raphani and Pathogenic and Genetic Comparison with Related Pathovars. , 2006, Phytopathology.

[42]  C. Bermejo,et al.  Analysis of the molecular basis of Xanthomonas axonopodis pv. citri pathogenesis in Citrus limon , 2006 .

[43]  D. Shultis,et al.  Outer Membrane Active Transport: Structure of the BtuB:TonB Complex , 2006, Science.

[44]  M. Allaire,et al.  Structure of TonB in Complex with FhuA, E. coli Outer Membrane Receptor , 2006, Science.

[45]  A. Furutani,et al.  Identification of novel HrpXo regulons preceded by two cis-acting elements, a plant-inducible promoter box and a -10 box-like sequence, from the genome database of Xanthomonas oryzae pv. oryzae. , 2006, FEMS microbiology letters.

[46]  J. M. Dow,et al.  Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A. Bogdanove,et al.  Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv. oryzicola. , 2006, Molecular plant-microbe interactions : MPMI.

[48]  A. Nordheim,et al.  ExbBD-Dependent Transport of Maltodextrins through the Novel MalA Protein across the Outer Membrane of Caulobacter crescentus , 2005, Journal of bacteriology.

[49]  S. Schuster,et al.  Insights into Genome Plasticity and Pathogenicity of the Plant Pathogenic Bacterium Xanthomonas campestris pv. vesicatoria Revealed by the Complete Genome Sequence , 2005, Journal of bacteriology.

[50]  U. Bonas,et al.  Expression levels of avrBs3-like genes affect recognition specificity in tomato Bs4- but not in pepper Bs3-mediated perception. , 2005, Molecular plant-microbe interactions : MPMI.

[51]  Masaru Takeya,et al.  Genome Sequence of Xanthomonas oryzae pv. oryzae Suggests Contribution of Large Numbers of Effector Genes and Insertion Sequences to Its Race Diversity , 2005 .

[52]  J. Poland,et al.  A maize resistance gene functions against bacterial streak disease in rice , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Xiaoyan Tang,et al.  Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Jan LW Rademaker,et al.  A comprehensive species to strain taxonomic framework for xanthomonas. , 2005, Phytopathology.

[55]  Michael Y. Galperin,et al.  C‐di‐GMP: the dawning of a novel bacterial signalling system , 2005, Molecular microbiology.

[56]  M. Van Sluys,et al.  Xylella and Xanthomonas Mobil'omics. , 2005, Omics : a journal of integrative biology.

[57]  Zhijian Yao,et al.  Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. , 2005, Genome research.

[58]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[59]  A. Furutani,et al.  Effects on Promoter Activity of Base Substitutions in the cis-Acting Regulatory Element of HrpXo Regulons in Xanthomonas oryzae pv. oryzae , 2005, Journal of bacteriology.

[60]  Hyungtae Kim,et al.  The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice , 2005, Nucleic acids research.

[61]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[62]  F. White,et al.  Diverse members of the AvrBs3/PthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. , 2004, Molecular plant-microbe interactions : MPMI.

[63]  J. Leach,et al.  The avrRxo1 gene from the rice pathogen Xanthomonas oryzae pv. oryzicola confers a nonhost defense reaction on maize with resistance gene Rxo1. , 2004, Molecular plant-microbe interactions : MPMI.

[64]  Michael Y. Galperin,et al.  Bacterial signal transduction network in a genomic perspective. , 2004, Environmental microbiology.

[65]  P. Ronald,et al.  RaxH/RaxR: a two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity. , 2004, Molecular plant-microbe interactions : MPMI.

[66]  P. Ronald,et al.  Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. , 2004, Molecular plant-microbe interactions : MPMI.

[67]  Lihuang Zhu,et al.  Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. , 2004, The Plant journal : for cell and molecular biology.

[68]  Xiaoyan Tang,et al.  Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. , 2004, The Plant journal : for cell and molecular biology.

[69]  Lian-Hui Zhang,et al.  A bacterial cell–cell communication signal with cross‐kingdom structural analogues , 2003, Molecular microbiology.

[70]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[71]  J. M. Dow,et al.  Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[73]  R. Kadner,et al.  Touch and go: tying TonB to transport , 2003, Molecular microbiology.

[74]  David P. Chimento,et al.  Substrate-induced transmembrane signaling in the cobalamin transporter BtuB , 2003, Nature Structural Biology.

[75]  R. Sonti,et al.  A high‐molecular‐weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non‐fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence , 2002, Molecular microbiology.

[76]  J. Deisenhofer,et al.  Structural basis of gating by the outer membrane transporter FecA. , 2002, Science.

[77]  E. C. Teixeira,et al.  Comparison of the genomes of two Xanthomonas pathogens with differing host specificities , 2002, Nature.

[78]  R. Sonti,et al.  rpfF mutants of Xanthomonas oryzae pv. oryzae are deficient for virulence and growth under low iron conditions. , 2002, Molecular plant-microbe interactions : MPMI.

[79]  M. Simmons,et al.  Regular ArticleConflict between Amino Acid and Nucleotide Characters , 2002 .

[80]  M. Simmons,et al.  Conflict between Amino Acid and Nucleotide Characters , 2002 .

[81]  P. Ronald,et al.  The Xanthomonas oryzae pv.◊oryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine‐5′‐phosphosulphate kinase that are required for AvrXa21 avirulence activity , 2002, Molecular microbiology.

[82]  J. M. Dow,et al.  A two‐component system involving an HD‐GYP domain protein links cell–cell signalling to pathogenicity gene expression in Xanthomonas campestris , 2000, Molecular microbiology.

[83]  U. Bonas,et al.  Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plant-inducible avirulence gene. , 2000, Molecular plant-microbe interactions : MPMI.

[84]  S. Salzberg,et al.  DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae , 2000, Nature.

[85]  J. M. Dow,et al.  Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris. , 2000, Microbiology.

[86]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[87]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[88]  J. Lake,et al.  Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[89]  S. Salzberg,et al.  Skewed oligomers and origins of replication. , 1998, Gene.

[90]  J. M. Dow,et al.  The rpfA gene of Xanthomonas campestris pathovar campestris, which is involved in the regulation of pathogenicity factor production, encodes an aconitase , 1998, Molecular microbiology.

[91]  J. M. Dow,et al.  A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule , 1997, Molecular microbiology.

[92]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[93]  J. M. Dow,et al.  Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae: involvement in exopolysaccharide production and virulence to rice. , 1996, Molecular plant-microbe interactions : MPMI.

[94]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[95]  Li-li Chen,et al.  A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21 , 1995, Science.

[96]  U. Bonas,et al.  Sequence and expression analysis of the hrpB pathogenicity operon of Xanthomonas campestris pv. vesicatoria which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa, and Fli secretion systems. , 1995, Molecular plant-microbe interactions : MPMI.

[97]  J. Swings,et al.  Reclassification of Xanthomonas , 1995 .

[98]  A. A. Benedict,et al.  Serological, pathological, and genetic diversity among strains of Xanthomonas campestris infecting crucifers , 1994 .

[99]  J. Parker,et al.  Interaction of Xanthomonas campestris with Arabidopsis thaliana: characterization of a gene from X. c. pv. raphani that confers avirulence to most A. thaliana accessions. , 1993, Molecular plant-microbe interactions : MPMI.

[100]  A. Hayward The hosts of Xanthomonas. , 1993 .

[101]  C. Kado,et al.  Incompatible interactions between crucifers and Xanthomonas campestris involve a vascular hypersensitive response: role of the hrpX locus. , 1992 .

[102]  C. Kado,et al.  Phenotypic Switching Affecting Chemotaxis, Xanthan Production, and Virulence in Xanthomonas campestris , 1990, Applied and environmental microbiology.

[103]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[104]  A. A. Benedict,et al.  Identification of xanthomonads and grouping of strains of Xanthomonas campestris pv. campestris with monoclonal antibodies , 1985 .

[105]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[106]  M. Starr The Genus Xanthomonas , 1981 .

[107]  M. Kimura Estimation of evolutionary distances between homologous nucleotide sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[108]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.