Structure Evolution of Ge-Doped CaTiO3 (CTG) at High Pressure: Search for the First 2:4 Locked-Tilt Perovskite by Synchrotron X-ray Diffraction and DFT Calculations

This research investigates the high-pressure behavior of the Ca(Ti0.95Ge0.05)O3 perovskite, a candidate of the locked-tilt perovskite family (orthorhombic compounds characterized by the absence of changes in the octahedral tilt and volume reduction under pressure controlled solely by isotropic compression). The study combines experimental high-pressure synchrotron diffraction data with density functional theory (DFT) calculations, complemented by the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), to understand the structural evolution of the perovskite under pressure. The results show that CTG undergoes nearly isotropic compression with the same compressibility along all three unit-cell axes (i.e., Ka0 = Kb0 = Kc0, giving a normalized cell distortion factor with pressure dnorm(P) = 1). However, a modest increase in octahedral tilting with pressure is revealed by DFT calculations, qualifying CTG as a new type of GdFeO3-type perovskite that exhibits both isotropic compression and nonlocked tilting. This finding complements two existing types: perovskites with anisotropic compression and tilting changes and those with isotropic compression and locked tilting. The multimethod approach provides valuable insights into the structural evolution of locked-tilt perovskites under high pressure and establishes a protocol for the efficient study of complex high-pressure systems. The results have implications for the design of new functional materials with desirable properties.

[1]  F. Nestola,et al.  Mg3Al2Si3O12 jeffbenite inclusion in super-deep diamonds is thermodynamically stable at very shallow Earth’s depths , 2023, Scientific Reports.

[2]  D. Belmonte,et al.  Ab initio thermal expansion and thermoelastic properties of ringwoodite (γ-Mg2SiO4) at mantle transition zone conditions , 2022, European Journal of Mineralogy.

[3]  D. Ceresoli,et al.  High pressure structure studies of three SrGeO3 polymorphs – Amorphization under pressure , 2021 .

[4]  J. Tse,et al.  Persistent Octahedral Coordination in Amorphous GeO2 Up to 100 GPa by Kβ′′ X-Ray Emission Spectroscopy , 2019, Physical Review X.

[5]  N. Rotiroti,et al.  CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle , 2018, Nature.

[6]  Jonathan Hwang,et al.  Perovskites in catalysis and electrocatalysis , 2017, Science.

[7]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[8]  T. Buonassisi,et al.  Promises and challenges of perovskite solar cells , 2017, Science.

[9]  K. Hirose,et al.  Perovskite in Earth’s deep interior , 2017, Science.

[10]  D. Belmonte First Principles Thermodynamics of Minerals at HP–HT Conditions: MgO as a Prototypical Material , 2017 .

[11]  U. Rodríguez-Mendoza,et al.  Structural, Vibrational, and Elastic Properties of Yttrium Orthoaluminate Nanoperovskite at High Pressures , 2017 .

[12]  M. Ardit Compressibility of orthorhombic perovskites. The effect of transition metal ions (TMI) , 2015 .

[13]  V. Prakapenka,et al.  DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration , 2015 .

[14]  G. Ottonello,et al.  Ab initio thermodynamic and thermophysical properties of sapphirine end-members in the join Mg4Al8Si2O20-Mg3Al10SiO20 , 2014 .

[15]  H. Yamane,et al.  Structure analysis of CaTi1−x Sn x O3 (x = 0.0–1.0) solid solutions , 2014, Powder Diffraction.

[16]  T. Duffy Earth science: Crystallography's journey to the deep Earth , 2014, Nature.

[17]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[18]  Xiang Wu,et al.  Structural and elastic properties of CaGeO3 perovskite at high pressures , 2011 .

[19]  J. Zhao,et al.  High-pressure crystal structure of elastically isotropic CaTiO3 perovskite under hydrostatic and non-hydrostatic conditions , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  C. Fennie,et al.  Polar octahedral rotations: A path to new multifunctional materials , 2011, 1108.2915.

[21]  A. M. Glazer,et al.  A brief history of tilts , 2011 .

[22]  S. Yamanaka,et al.  Thermomechanical properties of calcium series perovskite-type oxides , 2010 .

[23]  Andrea Di Cicco,et al.  Novel XAFS capabilities at ELETTRA synchrotron light source , 2009 .

[24]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  J. Ganguly,et al.  Thermodynamics in Earth and Planetary Sciences , 2008, Springer Textbooks in Earth Sciences, Geography and Environment.

[26]  G. Shen,et al.  Toward an internally consistent pressure scale , 2007, Proceedings of the National Academy of Sciences.

[27]  Ziyu Wu,et al.  First-principles study of the pressure-induced phase transition in CaTiO3 , 2005 .

[28]  M. Yashima,et al.  Space group and crystal structure of the Perovskite CaTiO3 from 296 to 1720K , 2005 .

[29]  D. Neuville,et al.  Pressure-induced Ge coordination change and polyamorphism in SiO2–GeO2 glasses , 2004 .

[30]  R. Angel,et al.  High-pressure single-crystal X-ray diffraction study of YAlO3 perovskite , 2004 .

[31]  M. Knapp,et al.  Lanthanum doped calcium titanates: synthesis, crystal structure, thermal expansion and transport properties , 2003 .

[32]  D. Pandey,et al.  Evolution of crystallographic phases in the system (Pb_1−xCa_x)TiO_3: A Rietveld study , 2003 .

[33]  R. Angel,et al.  Compression of CaTiO3 and CaGeO3 perovskites , 1999 .

[34]  Andreas K. Freund,et al.  Nine-crystal multianalyzer stage for high-resolution powder diffraction between 6 keV and 40 keV , 1998, Optics & Photonics.

[35]  A. Kubo,et al.  High pressure phase equilibria in the system CaTiO3-CaSiO3: stability of perovskite solid solutions , 1997 .

[36]  A. Beran,et al.  A single-crystal infrared spectroscopic and X-ray-diffraction study of untwinned San Benito perovskite containing OH groups , 1996 .

[37]  R. Liebermann,et al.  X-ray powder diffraction study of CaTiO3 perovskite at high temperatures , 1993 .

[38]  J. Bass,et al.  Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group , 1987 .

[39]  T. Yamanaka,et al.  Structure change of Ca 1 – x Sr x TiO 3 perovskite with composition and pressure , 2002 .

[40]  S. K. Paranjpe,et al.  Novel structural features and phase transition behaviour of (Sr1-xCax)TiO3: I. Neutron diffraction study , 1999 .