Accelerated rotation with orbital angular momentum modes

We introduce a class of light field that angularly accelerates during propagation. We show that the acceleration (deceleration) may be controlled by adjustment of a single parameter, and tuned continuously, down to no acceleration at all. As the angular acceleration takes place in a bounded space, the azimuthal degree of freedom, such fields accelerate periodically as they propagate. Notably, the amount of angular acceleration is not limited by paraxial considerations, may be tailored for large accelerations over arbitrarily long distances, and can be engineered independently of the beam’s spatial extent. We discuss how such angularly accelerating light fields can maintain the conservation of angular momentum through an energy exchange mechanism across the field.

[1]  Vladimir G. Volostnikov,et al.  Generation of spiral-type laser beams , 1997 .

[2]  N. Efremidis,et al.  Nonparaxial accelerating Bessel-like beams , 2013, 1310.2046.

[3]  Mordechai Segev,et al.  Nondiffracting accelerating wave packets of Maxwell's equations. , 2012, Physical review letters.

[4]  Daniele Faccio,et al.  Stationary nonlinear Airy beams , 2011 .

[5]  David G Grier,et al.  Optical solenoid beams. , 2010, Optics express.

[6]  K. Dholakia,et al.  Bessel beams: Diffraction in a new light , 2005 .

[7]  Miroslav Kolesik,et al.  Curved Plasma Channel Generation Using Ultraintense Airy Beams , 2009, Science.

[8]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[9]  Mohammad-Ali Miri,et al.  Fully vectorial accelerating diffraction-free Helmholtz beams. , 2012, Physical review letters.

[10]  David G Grier,et al.  Extended and knotted optical traps in three dimensions. , 2011, Optics express.

[11]  Sabino Chávez-Cerda,et al.  Nondiffracting beams: travelling, standing, rotating and spiral waves , 1996 .

[12]  A. Friberg,et al.  Holographic generation of diffraction-free beams. , 1988, Applied optics.

[13]  L. A. González,et al.  Pixelated phase computer holograms for the accurate encoding of scalar complex fields. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  A. Bekshaev,et al.  Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons. , 2006, Optics letters.

[15]  Roberto Morandotti,et al.  Nonparaxial Mathieu and Weber accelerating beams. , 2012, Physical review letters.

[16]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[17]  Andrew Forbes,et al.  Measuring the rotation rates of superpositions of higher-order Bessel beams , 2012 .

[18]  Adrian Ruelas,et al.  Accelerating light beams with arbitrarily transverse shapes. , 2014, Optics express.

[19]  M. Segev,et al.  Self-accelerating self-trapped beams , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[20]  J. Turunen,et al.  Rotating scale-invariant electromagnetic fields. , 2001, Optics express.

[21]  A. Forbes,et al.  Generation and propagation dynamics of obstructed and unobstructed rotating orbital angular momentum-carrying Helicon beams , 2012 .

[22]  M. Teague Irradiance moments: their propagation and use for unique retrieval of phase , 1982 .

[23]  Victor A. Soifer,et al.  Rotation of laser beams with zero of the orbital angular momentum , 2007 .

[24]  Peng Zhang,et al.  Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories. , 2013, Optics letters.

[25]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[26]  J. Glückstad,et al.  Optical twists in phase and amplitude. , 2011, Optics express.

[27]  Ruslan Vasilyeu,et al.  Generating superpositions of higher-order Bessel beams. , 2009, Optics express.

[28]  Jörg Baumgartl,et al.  Optically mediated particle clearing using Airy wavepackets , 2008 .

[29]  R. Trebino,et al.  Direct spatiotemporal measurements of accelerating ultrashort Bessel-type light bullets. , 2009, Optics express.

[30]  Frank W. Wise,et al.  Airy–Bessel wave packets as versatile linear light bullets , 2010 .

[31]  S. Chfivez-Cerda Nondiffracting beams: travelling, standing, rotating and spiral waves , 1996 .

[32]  Kishan Dholakia,et al.  Light beats the spread: “non‐diffracting” beams , 2010 .

[33]  M. Bandres,et al.  Three-dimensional accelerating electromagnetic waves. , 2013, Optics express.

[34]  Miles J. Padgett,et al.  IV The Orbital Angular Momentum of Light , 1999 .

[35]  Demetrios N. Christodoulides,et al.  Accelerating Optical Beams , 2013 .

[36]  Alexander Szameit,et al.  Generalized radially self-accelerating helicon beams. , 2014, Physical review letters.

[37]  J. Glückstad,et al.  Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces , 2013 .

[38]  Mark R. Dennis,et al.  Generation of Nondiffracting Electron Bessel Beams , 2014 .

[39]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[40]  Shamir,et al.  Wave propagation with rotating intensity distributions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  D. Christodoulides,et al.  Bessel-like optical beams with arbitrary trajectories. , 2012, Optics letters.

[42]  Demosthenes Ellinas,et al.  Optical Ferris Wheel for Ultracold Atoms , 2007 .

[43]  Miguel A. Bandres,et al.  Nondiffracting accelerating waves: Weber waves and parabolic momentum , 2012, 1209.4680.

[44]  David G Grier,et al.  Modulated optical vortices. , 2003, Optics letters.

[45]  F. Courvoisier,et al.  Sending femtosecond pulses in circles: highly nonparaxial accelerating beams. , 2012, Optics letters.

[46]  A Dogariu,et al.  Observation of accelerating Airy beams. , 2007, Physical review letters.

[47]  Roberto Morandotti,et al.  Generation of linear and nonlinear nonparaxial accelerating beams. , 2012, Optics letters.

[48]  Ido Dolev,et al.  Experimental observation of self-accelerating beams in quadratic nonlinear media. , 2012, Physical review letters.

[49]  Ady Arie,et al.  Generation of electron Airy beams , 2013, Nature.