Birth-and-death Processes in Python: The BirDePy Package

Birth-and-death processes (BDPs) form a class of continuous-time Markov chains that are particularly suited to describing the changes in the size of a population over time. Population-size-dependent BDPs (PSDBDPs) allow the rate at which a population grows to depend on the current population size. The main purpose of our new Python package BirDePy is to provide easy-to-use functions that allow the parameters of discretelyobserved PSDBDPs to be estimated. The package can also be used to estimate parameters of continuously-observed PSDBDPs, simulate sample paths, approximate transition probabilities, and generate forecasts. We describe in detail several methods which have been incorporated into BirDePy to achieve each of these tasks. The usage and effectiveness of the package is demonstrated through a variety of examples of PSDBDPs, as well as case studies involving annual population count data of two endangered bird species.

[1]  K. Jarrod Millman,et al.  Array programming with NumPy , 2020, Nat..

[2]  A. Jensen,et al.  Markoff chains as an aid in the study of Markoff processes , 1953 .

[3]  Florin Avram,et al.  Erlangian Approximations for Finite-Horizon Ruin Probabilities , 2002, ASTIN Bulletin.

[4]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[5]  Ward Whitt,et al.  An Introduction to Numerical Transform Inversion and Its Application to Probability Models , 2000 .

[6]  Peter P. Valko,et al.  Comparison of sequence accelerators forthe Gaver method of numerical Laplace transform inversion , 2004 .

[7]  D. Kendall An Artificial Realization of a Simple “Birth-And-Death” Process , 1950 .

[8]  M. Mandjes,et al.  THE RUNNING MAXIMUM OF A LEVEL-DEPENDENT QUASI-BIRTH-DEATH PROCESS , 2015, Probability in the Engineering and Informational Sciences.

[9]  L. Breuer Introduction to Stochastic Processes , 2022, Statistical Methods for Climate Scientists.

[10]  David A. Stanford,et al.  Erlangian approximation to finite time ruin probabilities in perturbed risk models , 2007, Numerical Methods for Structured Markov Chains.

[11]  L. Allen An Introduction to Stochastic Epidemic Models , 2008 .

[12]  Eman Almehdawe Queueing Networks: A Fundamental Approach , 2014, J. Oper. Res. Soc..

[13]  R. Jennrich,et al.  Conjugate Gradient Acceleration of the EM Algorithm , 1993 .

[14]  J. Reynolds,et al.  ON ESTIMATING THE PARAMETERS OF A BIRTH-DEATH PROCESS , 1973 .

[15]  J. McNamee,et al.  From the discrete to the continuous: Relationships and results for single-species population models , 2005, Math. Comput. Model..

[16]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[17]  T. Kurtz Limit theorems for sequences of jump Markov processes approximating ordinary differential processes , 1971, Journal of Applied Probability.

[18]  Linda R Petzold,et al.  Efficient step size selection for the tau-leaping simulation method. , 2006, The Journal of chemical physics.

[19]  Quanrong Wang,et al.  On different numerical inverse Laplace methods for solute transport problems , 2015 .

[20]  F. Cuthbert Endangered and Threatened Species of the Platte River , 2005 .

[21]  Winfried K. Grassmann Transient solutions in markovian queueing systems , 1977, Comput. Oper. Res..

[22]  Micha Yadin,et al.  Randomization Procedures in the Computation of Cumulative-Time Distributions over Discrete State Markov Processes , 1984, Oper. Res..

[23]  R. H. Hilderbrand The roles of carrying capacity, immigration, and population synchrony on persistence of stream-resident cutthroat trout , 2003 .

[24]  Jukka Corander,et al.  Adaptive Approximate Bayesian Computation Tolerance Selection , 2019, Bayesian Analysis.

[25]  R. Jennrich,et al.  Acceleration of the EM Algorithm by using Quasi‐Newton Methods , 1997 .

[26]  Ward Whitt,et al.  A Unified Framework for Numerically Inverting Laplace Transforms , 2006, INFORMS J. Comput..

[27]  J. Briskie,et al.  Nest site selection by the endangered black robin increases vulnerability to predation by an invasive bird , 2013 .

[28]  S. Tavaré The linear birth‒death process: an inferential retrospective , 2018, Advances in Applied Probability.

[29]  J. A. Murhy,et al.  Some Properties of Continued Fractions with Applications in Markov Processes , 1975 .

[30]  Richard J. Gibbens,et al.  Bistability in Communication Networks , 2010 .

[31]  J V Ross,et al.  On parameter estimation in population models. , 2006, Theoretical population biology.

[32]  S. Euan,et al.  Extinction vulnerability in two small, chronically inbred populations of Chatham Island black robin Petroica traversi , 2009 .

[33]  Thomas Taimre,et al.  Estimation for queues from queue length data , 2007, Queueing Syst. Theory Appl..

[34]  Ingemar Nåsell,et al.  Stochastic models of some endemic infections. , 2002, Mathematical biosciences.

[35]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[36]  D. Vlachos,et al.  Binomial distribution based tau-leap accelerated stochastic simulation. , 2005, The Journal of chemical physics.

[37]  A. N. Stokes,et al.  An Improved Method for Numerical Inversion of Laplace Transforms , 1982 .

[38]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[39]  Forrest W. Crawford,et al.  Computational methods for birth‐death processes , 2018, Wiley interdisciplinary reviews. Computational statistics.

[40]  D. Gillespie,et al.  Avoiding negative populations in explicit Poisson tau-leaping. , 2005, The Journal of chemical physics.

[41]  A. Davison,et al.  Parameter estimation for discretely observed linear birth‐and‐death processes , 2018, Biometrics.

[42]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[43]  Eugene V Koonin,et al.  Gene family evolution: an in-depth theoretical and simulation analysis of non-linear birth-death-innovation models , 2004, BMC Evolutionary Biology.

[44]  K. Lange A gradient algorithm locally equivalent to the EM algorithm , 1995 .

[45]  Siu Kwan Lam,et al.  Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.

[46]  B. Davies,et al.  Numerical Inversion of the Laplace Transform: A Survey and Comparison of Methods , 1979 .

[47]  A. Talbot The Accurate Numerical Inversion of Laplace Transforms , 1979 .

[48]  Miklós Telek,et al.  Numerical inverse Laplace transformation using concentrated matrix exponential distributions , 2020, Perform. Evaluation.

[49]  Jason Lowther Statistical Inference for Branching Processes , 1992 .

[50]  Bradley N. Strobel,et al.  Monitoring Whooping Crane Abundance Using Aerial Surveys: Influences on Detectability , 2013, Wildlife Society bulletin.

[51]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[52]  Sophie Hautphenne,et al.  Parameter estimation in branching processes with almost sure extinction , 2020, Bernoulli.

[53]  Donald Gross,et al.  The Randomization Technique as a Modeling Tool and Solution Procedure for Transient Markov Processes , 1984, Oper. Res..

[54]  C. Loan Computing integrals involving the matrix exponential , 1978 .

[55]  Franziska Michor,et al.  ESTIpop: a computational tool to simulate and estimate parameters for continuous-time Markov branching processes , 2020, Bioinform..

[56]  Marc A Suchard,et al.  Estimation for General Birth-Death Processes , 2011, Journal of the American Statistical Association.

[57]  J. Stoyanov Saddlepoint Approximations with Applications , 2008 .

[58]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[59]  Richard J. Boucherie,et al.  Uniformization: Basics, extensions and applications , 2018, Perform. Evaluation.

[60]  Thomas House,et al.  Gaussian process approximations for fast inference from infectious disease data. , 2018, Mathematical biosciences.

[61]  M. Ford Selection in Captivity during Supportive Breeding May Reduce Fitness in the Wild , 2002 .

[62]  D. Merton,et al.  The black robin : saving the world's most endangered bird , 1992 .

[63]  Harald Stehfest,et al.  Remark on algorithm 368: Numerical inversion of Laplace transforms , 1970, CACM.

[64]  Dao Nguyen,et al.  Statistical Inference for Partially Observed Markov Processes via the R Package pomp , 2015, 1509.00503.

[65]  Eugene V. Koonin,et al.  Biological applications of the theory of birth-and-death processes , 2005, Briefings Bioinform..

[66]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[67]  Kristopher L. Kuhlman Review of inverse Laplace transform algorithms for Laplace-space numerical approaches , 2012, Numerical Algorithms.

[68]  Thijs Janzen,et al.  Approximate Bayesian Computation of diversification rates from molecular phylogenies: introducing a new efficient summary statistic, the nLTT , 2015 .

[69]  H. Resit Akçakaya,et al.  Predictive accuracy of population viability analysis in conservation biology , 2000, Nature.

[70]  Yoni Nazarathy,et al.  A survey of parameter and state estimation in queues , 2020, Queueing Syst. Theory Appl..

[71]  Michel Mandjes,et al.  A Numerical Approach for Evaluating the Time-Dependent Distribution of a Quasi Birth-Death Process , 2021, Methodology and Computing in Applied Probability.

[72]  Sheng Wu,et al.  Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist , 2016, PLoS Comput. Biol..

[73]  Katharine Turner,et al.  Fitting Markovian binary trees using global and individual demographic data. , 2017, Theoretical population biology.

[74]  Awad H. Al-Mohy,et al.  A New Scaling and Squaring Algorithm for the Matrix Exponential , 2009, SIAM J. Matrix Anal. Appl..

[75]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[76]  Ward Whitt,et al.  An Introduction to Stochastic-Process Limits and their Application to Queues , 2002 .

[77]  Ward Whitt,et al.  Numerical Inversion of Laplace Transforms of Probability Distributions , 1995, INFORMS J. Comput..

[78]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[79]  Chris Sherlock,et al.  Direct statistical inference for finite Markov jump processes via the matrix exponential , 2018, Computational Statistics.

[80]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[81]  Kristopher L. Kuhlman,et al.  mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .

[82]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[83]  I. Nåsell,et al.  Extinction and quasi-stationarity in the Verhulst logistic model. , 2001, Journal of theoretical biology.

[84]  Linda R. Petzold,et al.  Improved leap-size selection for accelerated stochastic simulation , 2003 .

[85]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[86]  I Holmes,et al.  An expectation maximization algorithm for training hidden substitution models. , 2002, Journal of molecular biology.

[87]  M. Massaro,et al.  Post‐reintroduction distribution and habitat preferences of a spatially limited island bird species , 2018 .

[88]  F. McNulty,et al.  The Whooping Crane , 1968 .

[89]  M. Bladt,et al.  Statistical inference for discretely observed Markov jump processes , 2005 .

[90]  Ronald W. Wolff,et al.  Problems of Statistical Inference for Birth and Death Queuing Models , 1965 .

[91]  David F. Anderson,et al.  Error analysis of tau-leap simulation methods , 2009, 0909.4790.

[92]  Eugene V. Koonin,et al.  Simple stochastic birth andz death models of genome evolution: was there enough time for us to evolve? , 2003, Bioinform..

[93]  P K Pollett,et al.  On parameter estimation in population models II: multi-dimensional processes and transient dynamics. , 2009, Theoretical population biology.

[94]  Forrest W. Crawford,et al.  Transition probabilities for general birth–death processes with applications in ecology, genetics, and evolution , 2011, Journal of Mathematical Biology.

[95]  M. Nowak Evolutionary Dynamics: Exploring the Equations of Life , 2006 .

[96]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[97]  Andreas Hellander,et al.  Scalable machine learning-assisted model exploration and inference using Sciope. , 2020, Bioinformatics.

[98]  Grant M Harris,et al.  Influence of whooping crane population dynamics on its recovery and management , 2013 .

[99]  T. Bellows The Descriptive Properties of Some Models for Density Dependence , 1981 .

[100]  Leonard Kleinrock,et al.  Queueing Systems: Volume I-Theory , 1975 .