Evaluating the quantum optimal biased bound in a unitary evolution process
暂无分享,去创建一个
Huan Zhang | Mengmeng Luo | Yuetao Chen | Liqing Huang | Shoukang Chang | Qiang Ma | Wei Ye | Xuan Rao | Shaoyan Gao
[1] W. Ye,et al. Intramode-correlation–enhanced simultaneous multiparameter-estimation precision , 2022, Physical Review A.
[2] Chun-Hua Yuan,et al. Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation. , 2022, Physical review letters.
[3] Haidong Yuan,et al. QuanEstimation: An open-source toolkit for quantum parameter estimation , 2022, Physical Review Research.
[4] R. Meyer,et al. Parameter estimation with gravitational waves , 2022, Reviews of Modern Physics.
[5] W. Ye,et al. Evaluating the quantum Ziv-Zakai bound for phase estimation in noisy environments. , 2022, Optics express.
[6] Anthony J. Brady,et al. Entangled Sensor-Networks for Dark-Matter Searches , 2022, PRX Quantum.
[7] G. Agarwal,et al. Quantifying quantum-amplified metrology via Fisher information , 2022, Physical Review Research.
[8] Haidong Yuan,et al. Optimal Scheme for Quantum Metrology , 2021, Advanced Quantum Technologies.
[9] J. Shapiro,et al. Ultimate Accuracy Limit of Quantum Pulse-Compression Ranging. , 2021, Physical review letters.
[10] M. Gessner,et al. Improving sum uncertainty relations with the quantum Fisher information , 2021, Physical Review Research.
[11] G'eza T'oth,et al. Uncertainty relations with the variance and the quantum Fisher information based on convex decompositions of density matrices , 2021, Physical Review Research.
[12] Liang Jiang,et al. Distributed quantum phase sensing for arbitrary positive and negative weights , 2021, Physical Review Research.
[13] R. Demkowicz-Dobrzański,et al. Multiple-Phase Quantum Interferometry: Real and Apparent Gains of Measuring All the Phases Simultaneously. , 2021, Physical review letters.
[14] K. C. Tan,et al. Fisher Information Universally Identifies Quantum Resources. , 2021, Physical review letters.
[15] Zeyang Liao,et al. Improved phase sensitivity in a quantum optical interferometer based on multiphoton catalytic two-mode squeezed vacuum states , 2021 .
[16] Nicolai Friis,et al. Bayesian parameter estimation using Gaussian states and measurements , 2020, Quantum Science and Technology.
[17] P. Lam,et al. Efficient computation of the Nagaoka–Hayashi bound for multiparameter estimation with separable measurements , 2020, npj Quantum Information.
[18] Rafal Demkowicz-Dobrzanski,et al. Multi-parameter estimation beyond quantum Fisher information , 2020, Journal of Physics A: Mathematical and Theoretical.
[19] Earl T. Campbell,et al. Tight Bounds on the Simultaneous Estimation of Incompatible Parameters , 2019, Physical Review X.
[20] L. Vorster,et al. Bound , 2019, SIGGRAPH ASIA Computer Animation Festival.
[21] M. S. Zubairy,et al. Operational resource theory of nonclassicality via quantum metrology , 2019 .
[22] Pieter Kok,et al. Geometric perspective on quantum parameter estimation , 2019, AVS Quantum Science.
[23] Francesco Albarelli,et al. Evaluating the Holevo Cramér-Rao Bound for Multiparameter Quantum Metrology. , 2019, Physical review letters.
[24] Jesús Rubio,et al. Bayesian multiparameter quantum metrology with limited data , 2019, Physical Review A.
[25] Wei Ye,et al. Improvement of self-referenced continuous-variable quantum key distribution with quantum photon catalysis. , 2019, Optics express.
[26] Jesús Rubio,et al. Quantum metrology in the presence of limited data , 2018, New Journal of Physics.
[27] K. C. Tan,et al. Nonclassicality as a Quantifiable Resource for Quantum Metrology. , 2018, Physical review letters.
[28] Jeffrey H. Shapiro,et al. Distributed Quantum Sensing Using Continuous-Variable Multipartite Entanglement , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).
[29] J. Dunningham,et al. Multiparameter Estimation in Networked Quantum Sensors. , 2017, Physical review letters.
[30] Jes'us Rubio,et al. Non-asymptotic analysis of quantum metrology protocols beyond the Cramér–Rao bound , 2017, 1707.05022.
[31] Chun-Hua Yuan,et al. Intramode-correlation-enhanced phase sensitivities in an SU(1,1) interferometer , 2016, 1609.03308.
[32] L. Pezzè,et al. Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.
[33] Jing Liu,et al. Valid lower bound for all estimators in quantum parameter estimation , 2016, 1609.01618.
[34] Esteban Martinez,et al. Quantum estimation of unknown parameters , 2016, 1606.07899.
[35] E. Solano,et al. Quantum Estimation Methods for Quantum Illumination. , 2016, Physical review letters.
[36] Mankei Tsang,et al. Quantum Weiss-Weinstein bounds for quantum metrology , 2015, 1511.08974.
[37] Mankei Tsang,et al. Quantum theory of superresolution for two incoherent optical point sources , 2015, 1511.00552.
[38] Mankei Tsang,et al. Quantum Bell-Ziv-Zakai Bounds and Heisenberg Limits for Waveform Estimation , 2014, 1409.7877.
[39] Nicolas Gisin,et al. Tighter quantum uncertainty relations following from a general probabilistic bound , 2014, 1409.4440.
[40] J. Kołodyński,et al. Quantum limits in optical interferometry , 2014, 1405.7703.
[41] G. Tóth,et al. Quantum metrology from a quantum information science perspective , 2014, 1405.4878.
[42] Franco Nori,et al. Enhanced interferometry using squeezed thermal states and even or odd states , 2014, 1405.2397.
[43] Nicol'as Quesada,et al. Quantum correlations in optical metrology: Heisenberg-limited phase estimation without mode entanglement , 2014, 1404.7110.
[44] Jing Liu,et al. Phase-matching condition for enhancement of phase sensitivity in quantum metrology , 2013, 1308.4799.
[45] Carlos A. Pérez-Delgado,et al. Fundamental limits of classical and quantum imaging. , 2012, Physical review letters.
[46] Mankei Tsang,et al. Ziv-Zakai error bounds for quantum parameter estimation. , 2011, Physical review letters.
[47] Seth Lloyd,et al. Quantum measurement bounds beyond the uncertainty relations. , 2011, Physical review letters.
[48] Denes Petz,et al. Extremal properties of the variance and the quantum Fisher information , 2011, 1109.2831.
[49] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[50] Rafal Demkowicz-Dobrzanski,et al. Optimal phase estimation with arbitrary a priori knowledge , 2011, 1102.0786.
[51] Carlton M. Caves,et al. Fundamental quantum limit to waveform estimation , 2010, CLEO: 2011 - Laser Science to Photonic Applications.
[52] Masahito Hayashi,et al. Comparison Between the Cramer-Rao and the Mini-max Approaches in Quantum Channel Estimation , 2010, 1003.4575.
[53] Alfredo Luis,et al. Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. , 2010, Physical review letters.
[54] Aravind Chiruvelli,et al. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. , 2009, Physical review letters.
[55] Yonina C. Eldar,et al. A Lower Bound on the Bayesian MSE Based on the Optimal Bias Function , 2008, IEEE Transactions on Information Theory.
[56] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[57] G. Milburn,et al. Quantum technology: the second quantum revolution , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[58] Klauder,et al. SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.
[59] Tzay Y. Young,et al. Error bounds for stochastic estimation of signal parameters , 1971, IEEE Trans. Inf. Theory.
[60] W. Marsden. I and J , 2012 .
[61] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[62] C. Helstrom. Quantum detection and estimation theory , 1969 .