LMI-Based Reset ${\mathcal H}_{\infty}$ Design for Linear Continuous-Time Plants

In this technical note, an optimization-based synthesis of a multi-objective reset controller for linear plants is presented. The result allows designing via convex tools with a line-search a multi-objective reset controller optimizing both the exponential converging rate and the L2 gain. A novel peculiarity of our scheme is that the underlying linear flow dynamics is not necessarily stabilizing. This last property is the consequence of taking into account where the flowing trajectories lay and lead to improved performance, especially in terms of decay rate. Some simulations illustrate the usefulness of our techniques.

[1]  Luca Zaccarian,et al.  Stability and Performance of SISO Control Systems With First-Order Reset Elements , 2011, IEEE Transactions on Automatic Control.

[2]  A. Astolfi,et al.  Robust stabilization of chained systems via hybrid control , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[3]  Luca Zaccarian,et al.  Analytical and numerical Lyapunov functions for SISO linear control systems with first‐order reset elements , 2011 .

[4]  Luca Zaccarian,et al.  Stability properties of reset systems , 2008, Autom..

[5]  Andrew R Teel,et al.  Observer-based hybrid feedback: a local separation principle , 2010, Proceedings of the 2010 American Control Conference.

[6]  C. Hollot,et al.  FUNDAMENTAL PROPERTIES OF RESET CONTROL SYSTEMS , 2002 .

[7]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[8]  Sophie Tarbouriech,et al.  Lyapunov-based hybrid loops for stability and performance of continuous-time control systems , 2013, Autom..

[9]  A. Satoh State Feedback Synthesis of Linear Reset Control with L2 Performance Bound via LMI Approach , 2011 .

[10]  P. Gahinet,et al.  H design with pole placement constraints , 2018 .

[11]  Sophie Tarbouriech,et al.  Improving the performance of linear systems by adding a hybrid loop: The output feedback case , 2012, ACC.

[12]  Christopher V. Hollot,et al.  Analysis of reset control systems consisting of a FORE and second-order loop , 2001 .

[13]  Luca Zaccarian,et al.  Finite-gain LpLp stability for hybrid dynamical systems , 2013, Autom..

[14]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[15]  Izumi Masubuchi,et al.  LMI-based controller synthesis: A unified formulation and solution , 1998 .

[16]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[17]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[18]  Sophie Tarbouriech,et al.  A convex hybrid H∞ synthesis with guaranteed convergence rate , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[19]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[20]  Orhan Beker,et al.  Plant with integrator: an example of reset control overcoming limitations of linear feedback , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[21]  João Pedro Hespanha,et al.  Postprints from CCDC Title Hysteresis-based switching algorithms for supervisory control of uncertain systems Permalink , 2002 .

[22]  Sophie Tarbouriech,et al.  On hybrid state-feedback loops based on a dwell-time logic , 2012, ADHS.

[23]  Alfonso Baños,et al.  Reset times-dependent stability of reset control systems , 2007, 2007 European Control Conference (ECC).

[24]  Sophie Tarbouriech,et al.  LMI-based reset H∞ analysis and design for linear continuous-time plants , 2016 .

[25]  Sophie Tarbouriech,et al.  Using Luenberger observers and dwell‐time logic for feedback hybrid loops in continuous‐time control systems , 2013 .

[26]  R. Sanfelice,et al.  Hybrid dynamical systems , 2009, IEEE Control Systems.

[27]  Ricardo G. Sanfelice,et al.  Hybrid Dynamical Systems: Modeling, Stability, and Robustness , 2012 .

[28]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.