Numerical methods for convection-diffusion problems or The 30 years war

Convection-diffusion problems arise in the modelling of many physical processes. Their typical solutions exhibit boundary and/or interior layers. Despite the linear nature of the differential operator, these problems pose still-unanswered questions to the numerical analyst. This talk will give a selective overview of numerical methods for the solution of convection-diffusion problems, while placing them in a historical context. It examines the principles that underpin the competing numerical techniques in this area and presents some recent developments.

[1]  R. Kellogg,et al.  Analysis of some difference approximations for a singular perturbation problem without turning points , 1978 .

[2]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[3]  A. Il'in Differencing scheme for a differential equation with a small parameter affecting the highest derivative , 1969 .

[4]  Torsten Linß,et al.  The sdfem on Shishkin meshes for linear convection-diffusion problems , 2001, Numerische Mathematik.

[5]  Lutz Angermann A finite element method for the numerical solution of convection-dominated anisotropic diffusion equations , 2000, Numerische Mathematik.

[6]  Martin Stynes,et al.  On the Stability of Residual-Free Bubbles for Convection-Diffusion Problemsand their Approximation by a Two-Level Finite Element Method. , 1997 .

[7]  Volker John,et al.  A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .

[8]  JohnM . Miller,et al.  Robust Computational Techniques for Boundary Layers , 2000 .

[9]  Ernest A. Menze,et al.  The Penguin Atlas of World History , 1964 .

[10]  Martin Stynes,et al.  EFFICIENT GENERATION OF ORIENTED MESHES FOR SOLVING CONVECTION-DIFFUSION PROBLEMS , 1997 .

[11]  John J. H. Miller Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions , 1996 .

[12]  Hans-Görg Roos,et al.  Ten ways to generate the Il'in and related schemes , 1994 .

[13]  Torsten Linß,et al.  Layer-adapted meshes for convection-diffusion problems , 2003 .

[14]  Lutz Tobiska,et al.  The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy , 2003, SIAM J. Numer. Anal..

[15]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[16]  Natalia Kopteva,et al.  How accurate is the streamline-diffusion FEM inside characteristic (boundary and interior) layers? , 2004 .

[17]  Torsten Lin,et al.  Layer-adapted meshes for convection-diusion problems , 2003 .

[18]  D. N. De G. Allen,et al.  RELAXATION METHODS APPLIED TO DETERMINE THE MOTION, IN TWO DIMENSIONS, OF A VISCOUS FLUID PAST A FIXED CYLINDER , 1955 .

[19]  Niall Madden,et al.  Linear enhancements of the streamline diffusion method for convection-diffusion problems , 1996 .