Sharp Bounds for the Ratio ofq - Gamma Functions

Let Γq (0 < q ≠ 1) be the q–gamma function and let s ∈ (0, 1) be a real number. We determine the largest number α = α(q, s) and the smallest number β = β(q, s) such that the inequalities hold for all positive real numbers x. Our result refines and extends recently published inequalities by Ismail and Muldoon (1994).

[1]  E. B. Leach,et al.  Multi-variable extended mean values , 1984 .

[2]  M. E. Muldoon,et al.  Completely monotonic functions associated with the gamma function and its q-analogues , 1986 .

[3]  E. B. Leach,et al.  Extended mean values II , 1983 .

[4]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[5]  D. S. Mitrinovic,et al.  Means and Their Inequalities , 1989, Int. J. Math. Math. Sci..

[6]  Charakterisierungen und Ungleichungen für die q-Factorial-Funktionen , 1984 .

[7]  F. H. Jackson A Generalisation of the Functions $\Gamma (n)$ and $x^{n}$. , 1904, Proceedings of the Royal Society of London.

[8]  Horst Alzer,et al.  On some inequalities for the gamma and psi functions , 1997, Math. Comput..

[9]  P. Davis Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz , 1959 .

[10]  K. Stolarsky,et al.  Generalizations of the Logarithmic Mean , 1975 .

[11]  J. Bustoz,et al.  On Gamma function inequalities , 1986 .

[12]  E. B. Leach,et al.  Extended Mean Values , 1978 .

[13]  Theq-gamma function forx<0 , 1980 .

[14]  M. E. Muldoon,et al.  Some characterizations ofq-factorial functions , 1982 .

[15]  Theq-gamma function forx<0 , 1980 .

[16]  J. Thomae Beiträge zur Theorie der durch die Heinesche Reihe: darstellbaren Functionen. , 1869 .

[17]  D. Kershaw Some extensions of W. Gautschi’s inequalities for the gamma function , 1983 .

[18]  L. Gordon A Stochastic Approach to the Gamma Function , 1994 .