Pervasive lesion segregation shapes cancer genome evolution

[1]  Steven J. M. Jones,et al.  Pan-cancer analysis of whole genomes , 2020, Nature.

[2]  S. Nik-Zainal,et al.  Cellular survival over genomic perfection , 2019, Science.

[3]  T. Strick,et al.  Transcription-Coupled Repair: From Cells to Single Molecules and Back Again. , 2019, Journal of molecular biology.

[4]  Christopher D. McFarland,et al.  Most cancers carry a substantial deleterious load due to Hill-Robertson interference , 2019, bioRxiv.

[5]  David Haussler,et al.  Progressive alignment with Cactus: a multiple-genome aligner for the thousand-genome era , 2019, bioRxiv.

[6]  C. Swanton,et al.  Resolving genetic heterogeneity in cancer , 2019, Nature Reviews Genetics.

[7]  S. Morganella,et al.  A Compendium of Mutational Signatures of Environmental Agents , 2019, Cell.

[8]  M. Stratton,et al.  Characterizing Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis , 2019, Cell.

[9]  Jue Ruan,et al.  Genetic Load and Potential Mutational Meltdown in Cancer Cell Populations , 2019, Molecular biology and evolution.

[10]  Nuria Lopez-Bigas,et al.  OncodriveCLUSTL: a sequence-based clustering method to identify cancer drivers , 2018, bioRxiv.

[11]  David I. Benjamin,et al.  Quantification of somatic mutation flow across individual cell division events by lineage sequencing , 2018, Genome research.

[12]  Astrid Gall,et al.  Ensembl 2019 , 2018, Nucleic Acids Res..

[13]  B. Schuster-Böckler,et al.  Mutational signature distribution varies with DNA replication timing and strand asymmetry , 2018, Genome Biology.

[14]  Mark Gerstein,et al.  Sixteen diverse laboratory mouse reference genomes define strain specific haplotypes and novel functional loci , 2018, Nature Genetics.

[15]  Adrian Baez-Ortega,et al.  sigfit: flexible Bayesian inference of mutational signatures , 2018, bioRxiv.

[16]  Christopher T. Saunders,et al.  Strelka2: fast and accurate calling of germline and somatic variants , 2018, Nature Methods.

[17]  Chuang Tan,et al.  Universal Patterns of Selection in Cancer and Somatic Tissues , 2018, Cell.

[18]  Hongbing Shen,et al.  Whole-genome sequencing reveals genomic signatures associated with the inflammatory microenvironments in Chinese NSCLC patients , 2018, Nature Communications.

[19]  Ville Mustonen,et al.  The repertoire of mutational signatures in human cancer , 2018, Nature.

[20]  S. Nik-Zainal,et al.  Validating the concept of mutational signatures with isogenic cell models , 2018, Nature Communications.

[21]  Tim F. Rayner,et al.  Mutational landscape of a chemically-induced mouse model of liver cancer , 2018, bioRxiv.

[22]  Jack Kuipers,et al.  Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors , 2017, Genome research.

[23]  E. Cuppen,et al.  MutationalPatterns: comprehensive genome-wide analysis of mutational processes , 2017, bioRxiv.

[24]  F. Supek,et al.  Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes , 2017, Cell.

[25]  Catherine A. Shang,et al.  Whole-genome landscapes of major melanoma subtypes , 2017, Nature.

[26]  Swe Swe Myint,et al.  Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors , 2017, bioRxiv.

[27]  A. Schäffer,et al.  The evolution of tumour phylogenetics: principles and practice , 2017, Nature Reviews Genetics.

[28]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[29]  A. Gonzalez-Perez,et al.  OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations , 2016, Genome Biology.

[30]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[31]  Eric Talevich,et al.  CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing , 2016, PLoS Comput. Biol..

[32]  P. Hanawalt,et al.  Mutational Strand Asymmetries in Cancer Genomes Reveal Mechanisms of DNA Damage and Repair , 2016, Cell.

[33]  Kin Chan,et al.  Clusters of Multiple Mutations: Incidence and Molecular Mechanisms. , 2015, Annual review of genetics.

[34]  P. Campbell,et al.  Somatic mutation in cancer and normal cells , 2015, Science.

[35]  J. Lieb,et al.  Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution , 2015, Genes & development.

[36]  D. Odom,et al.  Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture , 2015, Cell reports.

[37]  Ruth King,et al.  conting: AnRPackage for Bayesian Analysis of Complete and Incomplete Contingency Tables , 2014, Journal of Statistical Software.

[38]  Idris A. Eckley,et al.  changepoint: An R Package for Changepoint Analysis , 2014 .

[39]  J. Guirouilh-Barbat,et al.  Is homologous recombination really an error-free process? , 2014, Front. Genet..

[40]  Cesare Furlanello,et al.  A promoter-level mammalian expression atlas , 2015 .

[41]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[42]  Junjie Chen,et al.  DNA damage tolerance: a double-edged sword guarding the genome. , 2013, Translational cancer research.

[43]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[44]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[45]  Steven A. Roberts,et al.  Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. , 2012, Molecular cell.

[46]  A. Sandelin,et al.  PROMoter uPstream Transcripts share characteristics with mRNAs and are produced upstream of all three major types of mammalian promoters , 2011, Nucleic acids research.

[47]  J. Ward,et al.  Proliferative and Nonproliferative Lesions of the Rat and Mouse Hepatobiliary System , 2010, Toxicologic pathology.

[48]  A. Takahashi,et al.  DNA Damage Induced by Alkylating Agents and Repair Pathways , 2010, Journal of nucleic acids.

[49]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[50]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[51]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[52]  D. Parkhomchuk,et al.  Use of high throughput sequencing to observe genome dynamics at a single cell level , 2009, Proceedings of the National Academy of Sciences.

[53]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[54]  Peter A. Meric,et al.  Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse , 2009, PLoS biology.

[55]  R. Maronpot Biological Basis of Differential Susceptibility to Hepatocarcinogenesis among Mouse Strains , 2009, Journal of toxicologic pathology.

[56]  Gene W. Yeo,et al.  Divergent Transcription from Active Promoters , 2008, Science.

[57]  A. Buchmann,et al.  Differential selection for B-raf and Ha-ras mutated liver tumors in mice with high and low susceptibility to hepatocarcinogenesis. , 2008, Mutation research.

[58]  L. Donahue,et al.  Chromosomal inversion discovered in C3H/HeJ mice. , 2006, Genomics.

[59]  R. Maronpot,et al.  Mutations in the ras proto-oncogene: clues to etiology and molecular pathogenesis of mouse liver tumors. , 1995, Toxicology.

[60]  B. Singer In vivo formation and persistence of modified nucleosides resulting from alkylating agents. , 1985, Environmental health perspectives.

[61]  P. Perry,et al.  Cytological detection of mutagen–carcinogen exposure by sister chromatid exchange , 1975, Nature.

[62]  M. Kimura The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. , 1969, Genetics.

[63]  W. G. Hill,et al.  The effect of linkage on limits to artificial selection. , 1966, Genetical research.

[64]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[65]  Trevor J Pugh,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[66]  klaguia International Network of Cancer Genome Projects , 2010 .

[67]  G. Williams,et al.  N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. , 1996, Pharmacology & therapeutics.