Attribute Dependencies for Data with Grades

Abstract This paper examines attribute dependencies in data that involve grades, such as a grade to which an object is red or a grade to which two objects are similar. We thus extend the classical agenda by allowing graded, or “fuzzy”, attributes instead of Boolean, yes-or-no attributes in case of attribute implications, and allowing approximate match based on degrees of similarity instead of exact match based on equality in case of functional dependencies. In a sense, we move from bivalence, inherently present in the now-available theories of dependencies, to a more flexible setting that involves grades. Such a shift has far-reaching consequences. We argue that a reasonable theory of dependencies may be developed by making use of mathematical fuzzy logic, a recently developed many-valued logic. Namely, the theory of dependencies is then based on a solid logic calculus the same way classical dependencies are based on classical logic. For instance, rather than handling degrees of similarity in an ad hoc manner, we consistently treat them as truth values, the same way as true (match) and false (mismatch) are treated in classical theories. In addition, several notions intuitively embraced in the presence of grades, such as a degree of validity of a particular dependence or a degree of entailment, naturally emerge and receive a conceptually clean treatment in the presented approach. In the first part of this two-part paper, we discuss motivations, provide basic notions of syntax and semantics and develop basic results which include entailment of dependencies, associated closure structures and a logic of dependencies with two versions of completeness theorem.

[1]  Peter Jipsen,et al.  Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .

[2]  Vilém Vychodil,et al.  Fuzzy Attribute Implications: Computing Non-redundant Bases Using Maximal Independent Sets , 2005, Australian Conference on Artificial Intelligence.

[3]  Petr Hájek,et al.  On very true , 2001, Fuzzy Sets Syst..

[4]  L. Beran,et al.  [Formal concept analysis]. , 1996, Casopis lekaru ceskych.

[5]  G. Mayor,et al.  Triangular norms on discrete settings , 2005 .

[6]  Vilém Vychodil,et al.  Attribute dependencies for data with grades II*,† , 2016, Int. J. Gen. Syst..

[7]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[8]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[9]  Satoko Titani,et al.  Globalization of intui tionistic set theory , 1987, Ann. Pure Appl. Log..

[10]  Horst Herrlich,et al.  Galois Connections , 1985, Mathematical Foundations of Programming Semantics.

[11]  Vilem Vychodil,et al.  Properties of models of fuzzy attribute implications , 2006 .

[12]  Vilém Vychodil,et al.  Fuzzy Closure Operators with Truth Stressers , 2005, Log. J. IGPL.

[13]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[14]  J. Goguen L-fuzzy sets , 1967 .

[15]  Czeslaw Bylinski,et al.  Galois Connections , 1985, Mathematical Foundations of Programming Semantics.

[16]  Ronald Fagin,et al.  Functional Dependencies in a Relational Data Base and Propositional Logic , 1977, IBM J. Res. Dev..

[17]  Vilém Vychodil,et al.  Axiomatizations of Fuzzy Attribute Logic , 2005, IICAI.

[18]  Arun K. Majumdar,et al.  Fuzzy Functional Dependencies and Lossless Join Decomposition of Fuzzy Relational Database Systems , 1988, ACM Trans. Database Syst..

[19]  Lotfi A. Zadeh,et al.  Fuzzy Logic , 2009, Encyclopedia of Complexity and Systems Science.

[20]  Petr Hájek,et al.  Handbook of mathematical fuzzy logic , 2011 .

[21]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[22]  Vilém Vychodil,et al.  Reducing attribute implications from data tables with fuzzy attributes to tables with binary attributes , 2005 .

[23]  Vilém Vychodil,et al.  Functional Dependencies of Data Tables Over Domains with Similarity Relations , 2005, IICAI.

[24]  Claudio Carpineto,et al.  Concept data analysis - theory and applications , 2004 .

[25]  Petr Hájek,et al.  The GUHA method and its meaning for data mining , 2010, J. Comput. Syst. Sci..

[26]  Lotfi A. Zadeh,et al.  Is there a need for fuzzy logic? , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[27]  Lotfi A. Zadeh,et al.  Fuzzy logic, neural networks, and soft computing , 1993, CACM.

[28]  C.J.H. Mann,et al.  Fuzzy Relational Systems: Foundations and Principles , 2003 .

[29]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[30]  Vasudha Bhatnagar,et al.  Algorithms for Association Rule Mining , 2009, Encyclopedia of Artificial Intelligence.

[31]  F. E. A Relational Model of Data Large Shared Data Banks , 2000 .

[32]  Bernhard Ganter,et al.  Two Basic Algorithms in Concept Analysis , 2010, ICFCA.

[33]  Vilém Vychodil,et al.  Codd's Relational Model from the Point of View of Fuzzy Logic , 2011, J. Log. Comput..

[34]  Georg Struth,et al.  Residuated Lattices , 1938, Arch. Formal Proofs.

[35]  Vincent Duquenne,et al.  Attribute-incremental construction of the canonical implication basis , 2007, Annals of Mathematics and Artificial Intelligence.

[36]  Ronald Fagin,et al.  Combining Fuzzy Information from Multiple Systems , 1999, J. Comput. Syst. Sci..

[37]  Ronald Fagin,et al.  Combining fuzzy information: an overview , 2002, SGMD.

[38]  Radim Belohlávek,et al.  Fuzzy Galois Connections , 1999, Math. Log. Q..

[39]  Maria Adler,et al.  Mathematical Principles Of Fuzzy Logic , 2016 .

[40]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[41]  Petr Hájek,et al.  What is mathematical fuzzy logic , 2006, Fuzzy Sets Syst..

[42]  David Maier,et al.  The Theory of Relational Databases , 1983 .

[43]  Sergei O. Kuznetsov,et al.  Some decision and counting problems of the Duquenne-Guigues basis of implications , 2008, Discret. Appl. Math..

[44]  R. Mesiar,et al.  Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .

[45]  Vilém Vychodil,et al.  Formal concept analysis and linguistic hedges , 2012, Int. J. Gen. Syst..

[46]  Vilém Vychodil,et al.  A logic of graded attributes , 2015, Arch. Math. Log..

[47]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[48]  W. W. Armstrong,et al.  Dependency Structures of Data Base Relationships , 1974, IFIP Congress.

[49]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[50]  Gregory S. Richardson,et al.  The structure of fuzzy preferences: Social choice implications , 1998 .

[51]  Siegfried Gottwald,et al.  Mathematical Fuzzy Logics , 2008, Bulletin of Symbolic Logic.

[52]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[53]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[54]  T. Havránek,et al.  Mechanizing Hypothesis Formation: Mathematical Foundations for a General Theory , 1978 .

[55]  Radim Belohlávek,et al.  Concept lattices and order in fuzzy logic , 2004, Ann. Pure Appl. Log..

[56]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[57]  Bernhard Ganter Begriffe Und Implikationen , 2000 .

[58]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.

[59]  Philip A. Bernstein,et al.  Decomposition of a Data Base and the Theory of Boolean Switching Functions , 1973, IBM J. Res. Dev..