Conserved translational frameshift in dsDNA bacteriophage tail assembly genes.

[1]  M. Loessner,et al.  Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis , 2003, Molecular microbiology.

[2]  R. Gesteland,et al.  Programmed translational −1 frameshifting on hexanucleotide motifs and the wobble properties of tRNAs , 2003, The EMBO journal.

[3]  O. Namy,et al.  Prokaryotic-style frameshifting in a plant translation system: conservation of an unusual single-tRNA slippage event , 2003, The EMBO journal.

[4]  W. Jacobs,et al.  Origins of Highly Mosaic Mycobacteriophage Genomes , 2003, Cell.

[5]  B. Bartlett,et al.  Programmed Translational Frameshift in the Bacteriophage P2 FETUD Tail Gene Operon , 2002, Journal of bacteriology.

[6]  S. Casjens,et al.  Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. , 2002, Journal of molecular biology.

[7]  Roger W. Hendrix,et al.  Phage Genomics Small Is Beautiful , 2002, Cell.

[8]  B. Bartlett,et al.  Programmed Translational Frameshift in the Bacteriophage P2 FETUD Tail Gene Operon , 2002, Journal of bacteriology.

[9]  J. F. Atkins,et al.  Overriding standard decoding: implications of recoding for ribosome function and enrichment of gene expression. , 2001, Cold Spring Harbor symposia on quantitative biology.

[10]  D. Giedroc,et al.  Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting1 , 2000, Journal of Molecular Biology.

[11]  Igor P. Ivanov,et al.  Conservation of polyamine regulation by translational frameshifting from yeast to mammals , 2000, The EMBO journal.

[12]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[13]  R. Hendrix,et al.  Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  E Rivas,et al.  A dynamic programming algorithm for RNA structure prediction including pseudoknots. , 1998, Journal of molecular biology.

[15]  Igor P. Ivanov,et al.  Programmed frameshifting in the synthesis of mammalian antizyme is +1 in mammals, predominantly +1 in fission yeast, but -2 in budding yeast. , 1998, RNA.

[16]  Zhongqi Zhang,et al.  A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra , 1998, Journal of the American Society for Mass Spectrometry.

[17]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[18]  J. F. Atkins,et al.  Reading two bases twice: mammalian antizyme frameshifting in yeast. , 1996, The EMBO journal.

[19]  P. Farabaugh Programmed translational frameshifting. , 1996, Annual review of genetics.

[20]  J. F. Atkins,et al.  Recoding: dynamic reprogramming of translation. , 1996, Annual review of biochemistry.

[21]  R. Hendrix,et al.  Genetic basis of bacteriophage HK97 prohead assembly. , 1995, Journal of molecular biology.

[22]  J. F. Curran,et al.  Decoding with the A:I wobble pair is inefficient. , 1995, Nucleic acids research.

[23]  J. F. Atkins,et al.  Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme , 1995, Cell.

[24]  F. Eiserling,et al.  Tail length determination in bacteriophage T4. , 1994, Virology.

[25]  S. Casjens,et al.  A Programmed Translational Frameshift is Required for the Synthesis of a Bacteriophage λ Tail Assembly Protein , 1993 .

[26]  O. Fayet,et al.  Translational frameshifting in the control of transposition in bacteria , 1993, Molecular microbiology.

[27]  I. Brierley,et al.  Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal , 1992, Journal of Molecular Biology.

[28]  J. F. Atkins,et al.  Frameshifting in gene 10 of bacteriophage T7 , 1991, Journal of bacteriology.

[29]  A. Flower,et al.  The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Walker,et al.  Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III gamma subunit from within the tau subunit reading frame. , 1990, Nucleic acids research.

[31]  A Kornberg,et al.  Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. Weiss,et al.  Ribosomal frameshifting from -2 to +50 nucleotides. , 1990, Progress in nucleic acid research and molecular biology.

[33]  S. Casjens,et al.  Translation initiation controls the relative rates of expression of the bacteriophage lambda late genes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[34]  C. McHenry DNA polymerase III holoenzyme of Escherichia coli. , 1988, Annual review of biochemistry.

[35]  I. Katsura Determination of bacteriophage λ tail length by a protein ruler , 1987, Nature.

[36]  I. Katsura Determination of bacteriophage lambda tail length by a protein ruler. , 1987, Nature.

[37]  R. Weiss,et al.  Slippery runs, shifty stops, backward steps, and forward hops: -2, -1, +1, +2, +5, and +6 ribosomal frameshifting. , 1987, Cold Spring Harbor symposia on quantitative biology.

[38]  W. Craigen,et al.  Expression of peptide chain release factor 2 requires high-efficiency frameshift , 1986, Nature.

[39]  F. Eiserling,et al.  Intracellular morphogenesis of bacteriophage T4. II. Head morphogenesis. , 1984, Virology.

[40]  H. Murialdo,et al.  Morphogenetic genes C and Nu3 overlap in bacteriophage λ , 1980, Nature.