High-rate synthesis of Cu-BTC metal-organic frameworks.

The reaction conditions for the synthesis of Cu-BTC (BTC = benzene-1,3,5-tricarboxylic acid) were elucidated using a continuous-flow microreactor-assisted solvothermal system to achieve crystal size and phase control. A high-rate synthesis of Cu-BTC metal-organic frameworks with a BET surface area of more than 1600 m(2) g(-1) (Langmuir surface area of more than 2000 m(2) g(-1)) and with a 97% production yield could be achieved with a total reaction time of 5 minutes.

[1]  J. Atwood,et al.  Engineering void space in organic van der Waals crystals: calixarenes lead the way. , 2007, Chemical Society reviews.

[2]  Xinsheng Peng,et al.  Mesoporous separation membranes of {[Cu(BTC–H2)2·(H2O)2]·3H2O} nanobelts synthesized by ultrasonication at room temperature , 2013 .

[3]  Hae‐Kwon Jeong,et al.  HKUST-1 membranes on porous supports using secondary growth , 2010 .

[4]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[5]  S. Gumma,et al.  Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes , 2009 .

[6]  R. Banerjee,et al.  Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. , 2013, Journal of the American Chemical Society.

[7]  Jun Kim,et al.  Sonochemical synthesis of MOF-5. , 2008, Chemical communications.

[8]  M. Mehring,et al.  Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)] , 2010 .

[9]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[10]  E. Haque,et al.  Rapid syntheses of a metal-organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses. , 2010, Physical chemistry chemical physics : PCCP.

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[13]  Stefan Kaskel,et al.  Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range , 2012 .

[14]  Susumu Kitagawa,et al.  Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes , 2010 .

[15]  Inhar Imaz,et al.  A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. , 2013, Nature chemistry.

[16]  F. Emmerling,et al.  Mechanochemical Synthesis of Metal-Organic Frameworks : A Fast and FacileApproach towardQuantitativeYields andHighSpecific SurfaceAreas , 2010 .

[17]  Wenchuan Wang,et al.  Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping. , 2011, Angewandte Chemie.

[18]  Hyung Dae Jin,et al.  High-rate synthesis of phosphine-stabilized undecagold nanoclusters using a multilayered micromixer , 2010, Nanotechnology.

[19]  S. Jhung,et al.  Facile Syntheses of Metal-organic Framework Cu3(BTC)2(H2O)3 under Ultrasound , 2009 .

[20]  L. Qiu,et al.  Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method , 2009 .

[21]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[22]  M. Roeffaers,et al.  Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability , 2011, Nature Chemistry.

[23]  O. Shekhah,et al.  MOF thin films: existing and future applications. , 2011, Chemical Society reviews.

[24]  K. Gubbins,et al.  Pore size distribution analysis of microporous carbons: a density functional theory approach , 1993 .

[25]  Y. Hwang,et al.  Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture , 2009 .

[26]  Hae‐Kwon Jeong,et al.  Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. , 2008, Chemical communications.

[27]  D. Zhao,et al.  Synthesis and Structure of a New 3D Porous Cu(II)-Benzene-1,3,5-tricarboxylate Coordination Polymer, [Cu2(OH)(BTC)(H2O)]n.2nH2O , 2003 .

[28]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[29]  Johan A. Martens,et al.  Simple synthesis recipes of porous materials , 2011 .

[30]  F. Kapteijn,et al.  Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina , 2008 .

[31]  C. Kirschhock,et al.  Stability improvement of Cu3(BTC)2 metal-organic frameworks under steaming conditions by encapsulation of a Keggin polyoxometalate. , 2011, Chemical communications.

[32]  M. Kanatzidis,et al.  Design of Solids from Molecular Building Blocks: Golden Opportunities for Solid State Chemistry , 2000 .

[33]  Fei Ke,et al.  Rapid synthesis of nanoscale terbium-based metal–organic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid , 2013 .

[34]  E. Teller,et al.  On a Theory of the van der Waals Adsorption of Gases , 1940 .

[35]  Edward Lester,et al.  Instant MOFs: continuous synthesis of metal-organic frameworks by rapid solvent mixing. , 2012, Chemical communications.

[36]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[37]  M. Carreon,et al.  Synthesis and CO2/CH4 separation performance of Bio-MOF-1 membranes. , 2012, Chemical communications.

[38]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[39]  R. Clowes,et al.  Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) , 2010 .