Real‐time time‐dependent electronic structure theory

Real‐time time‐dependent electronic structure theory is one of the most promising methods for investigating time‐dependent molecular responses and electronic dynamics. Since its first modern use in the 1990s, it has been used to study a wide variety of spectroscopic properties and electronic responses to intense external electromagnetic fields, complex environments, and open quantum systems. It has also been used to study molecular conductance, excited state dynamics, ionization, and nonlinear optical effects. Real‐time techniques describe non‐perturbative responses of molecules, allowing for studies that go above and beyond the more traditional energy‐ or frequency‐domain‐based response theories. Recent progress in signal analysis, accurate treatment of environmental responses, relativistic Hamiltonians, and even quantized electromagnetic fields have opened up new avenues of research in time‐dependent molecular response. After discussing the history of real‐time methods, we explore some of the necessary mathematical theory behind the methods, and then survey a wide (yet incomplete) variety of applications for real‐time methods. We then present some brief remarks on the future of real‐time time‐dependent electronic structure theory. WIREs Comput Mol Sci 2018, 8:e1341. doi: 10.1002/wcms.1341

[1]  G. Scuseria,et al.  Magnetization Dynamics from Time-Dependent Noncollinear Spin Density Functional Theory Calculations. , 2015, Journal of chemical theory and computation.

[2]  S. Mukamel,et al.  Manipulating molecules with quantum light , 2017, Proceedings of the National Academy of Sciences.

[3]  N. Govind,et al.  Linear-Response and Real-Time Time-Dependent Density Functional Theory Studies of Core-Level Near-Edge X-Ray Absorption. , 2012, Journal of chemical theory and computation.

[4]  A. Aspuru‐Guzik,et al.  Open Quantum Systems: Density Matrix Formalism and Applications , 2012 .

[5]  Wojciech Rozmus,et al.  A symplectic integration algorithm for separable Hamiltonian functions , 1990 .

[6]  N. Wiener The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction , 1949 .

[7]  Bradley F. Habenicht,et al.  Two-electron Rabi oscillations in real-time time-dependent density-functional theory. , 2014, The Journal of chemical physics.

[8]  Kenneth Ruud,et al.  Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption Matrix Elements , 2015, Journal of chemical theory and computation.

[9]  Stephen K. Gray,et al.  Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods , 1994 .

[10]  Angel Rubio,et al.  Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  L. Cederbaum,et al.  ULTRAFAST CHARGE MIGRATION BY ELECTRON CORRELATION , 1999 .

[12]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[13]  K. Ruud,et al.  X-ray absorption resonances near L2,3-edges from real-time propagation of the Dirac-Kohn-Sham density matrix. , 2015, Physical chemistry chemical physics : PCCP.

[14]  K. Ruud,et al.  Excitation Energies from Real-Time Propagation of the Four-Component Dirac-Kohn-Sham Equation. , 2015, Journal of chemical theory and computation.

[15]  Lorenz S. Cederbaum,et al.  Ultrafast correlation-driven electron dynamics , 2014 .

[16]  H. Schlegel,et al.  Angular Dependence of Ionization by Circularly Polarized Light Calculated with Time-Dependent Configuration Interaction with an Absorbing Potential. , 2017, The journal of physical chemistry. A.

[17]  Bradley F. Habenicht,et al.  Peak-shifting in real-time time-dependent density functional theory. , 2015, Journal of chemical theory and computation.

[18]  Sidney Yip,et al.  Time-dependent density functional theory with ultrasoft pseudopotentials: Real-time electron propagation across a molecular junction , 2006 .

[19]  L. Kronik,et al.  Driven Liouville von Neumann Approach for Time-Dependent Electronic Transport Calculations in a Nonorthogonal Basis-Set Representation , 2016 .

[20]  Kenichi L. Ishikawa,et al.  Time-dependent complete active-space self-consistent field method for multielectron dynamics in intense laser fields , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[21]  Yan Mo,et al.  Time-dependent density-functional theory for open systems , 2007 .

[22]  Triet S. Nguyen,et al.  How electronic dynamics with Pauli exclusion produces Fermi-Dirac statistics. , 2014, The Journal of chemical physics.

[23]  Dmitri A Romanov,et al.  A time-dependent Hartree-Fock approach for studying the electronic optical response of molecules in intense fields. , 2005, Physical chemistry chemical physics : PCCP.

[24]  Angel Rubio,et al.  Real-space, real-time method for the dielectric function , 2000 .

[25]  R. Baer,et al.  Ionization and high-order harmonic generation in aligned benzene by a short intense circularly polarized laser pulse , 2003 .

[26]  Feizhi Ding,et al.  Modeling ultrafast solvated electronic dynamics using time-dependent density functional theory and polarizable continuum model. , 2012, The journal of physical chemistry. A.

[27]  C. Ullrich,et al.  Electron dynamics in strongly excited sodium clusters: a density-functional study with self-interaction correction , 1998 .

[28]  O. Hod,et al.  Driven Liouville von Neumann Equation in Lindblad Form. , 2015, The journal of physical chemistry. A.

[29]  Á. Rubio,et al.  Structure, electronic, and optical properties of TiO2 atomic clusters: an ab initio study. , 2011, The Journal of chemical physics.

[30]  S. Pipolo,et al.  Equation of motion for the solvent polarization apparent charges in the polarizable continuum model: Application to time-dependent CI. , 2016, The Journal of chemical physics.

[31]  John C. Butcher,et al.  A history of Runge-Kutta methods , 1996 .

[32]  Angel Rubio,et al.  Enhancing and controlling single-atom high-harmonic generation spectra: a time-dependent density-functional scheme , 2014, 1409.4070.

[33]  Xiaosong Li,et al.  Efficient first-principles electronic dynamics. , 2011, The Journal of chemical physics.

[34]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[35]  Á. Rubio,et al.  Nonlinear phenomena in time-dependent density-functional theory: What Rabi oscillations can teach us , 2011, 1101.2880.

[36]  Christine M Aikens,et al.  Quantum coherent plasmon in silver nanowires: a real-time TDDFT study. , 2014, The Journal of chemical physics.

[37]  A. Siegert On the Derivation of the Dispersion Formula for Nuclear Reactions , 1939 .

[38]  Trygve Helgaker,et al.  Recent advances in wave function-based methods of molecular-property calculations. , 2012, Chemical reviews.

[39]  George F. Bertsch,et al.  Time-dependent local-density approximation in real time , 1996 .

[40]  Accurate symplectic integrators via random sampling , 1995 .

[41]  G. Cerullo,et al.  Coherent ultrafast charge transfer in an organic photovoltaic blend , 2014, Science.

[42]  James B. Anderson,et al.  Quantum chemistry by random walk. H 2P, H+3D3h1A′1, H23Σ+u, H41Σ+g, Be 1S , 1976 .

[43]  R. McLachlan,et al.  The accuracy of symplectic integrators , 1992 .

[44]  Joshua J Goings,et al.  An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra. , 2016, The Journal of chemical physics.

[45]  David B. Williams-Young,et al.  Accelerating Real-Time Time-Dependent Density Functional Theory with a Nonrecursive Chebyshev Expansion of the Quantum Propagator. , 2016, Journal of chemical theory and computation.

[46]  M. S. Weiss,et al.  Three-dimensional time-dependent Hartree-Fock calculations: Application to 16O + 16O collisions , 1978 .

[47]  H. Schlegel,et al.  Electronic optical response of molecules in intense fields: comparison of TD-HF, TD-CIS, and TD-CIS(D) approaches. , 2007, The Journal of chemical physics.

[48]  Kenneth Ruud,et al.  A density matrix-based quasienergy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets. , 2008, The Journal of chemical physics.

[49]  Martin Head-Gordon,et al.  Computation of high-harmonic generation spectra of the hydrogen molecule using time-dependent configuration-interaction , 2016 .

[50]  J. M. Sanz-Serna,et al.  Classical numerical integrators for wave‐packet dynamics , 1996 .

[51]  John A. Parkhill,et al.  Accelerating Realtime TDDFT with Block-Orthogonalized Manby-Miller Embedding Theory. , 2017, Journal of Chemical Theory and Computation.

[52]  Fernando Casas,et al.  A Concise Introduction to Geometric Numerical Integration , 2016 .

[53]  J J Rehr,et al.  Real-time time-dependent density functional theory approach for frequency-dependent nonlinear optical response in photonic molecules. , 2007, The Journal of chemical physics.

[54]  James B. Anderson,et al.  Quantum chemistry by random walk: Higher accuracy , 1980 .

[55]  Stefan Klinkusch,et al.  Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory. , 2009, The Journal of chemical physics.

[56]  Feizhi Ding,et al.  Mechanisms of bridge-mediated electron transfer: a TDDFT electronic dynamics study. , 2012, The Journal of chemical physics.

[57]  N. Govind,et al.  Excited State Absorption from Real-Time Time-Dependent Density Functional Theory. , 2015, Journal of chemical theory and computation.

[58]  P. D. Nguyen,et al.  Solvated First-Principles Excited-State Charge-Transfer Dynamics with Time-Dependent Polarizable Continuum Model and Solvent Dielectric Relaxation , 2012 .

[59]  B. Peng,et al.  Real-Time TDDFT Studies of Exciton Decay and Transfer in Silver Nanowire Arrays , 2015 .

[60]  Roi Baer,et al.  A method for ab initio nonlinear electron-density evolution , 2001 .

[61]  X. Andrade,et al.  Application of compressed sensing to the simulation of atomic systems , 2012, Proceedings of the National Academy of Sciences.

[62]  M. Hoffmann,et al.  Time-Dependent Configuration Interaction Using the Graphical Unitary Group Approach: Nonlinear Electric Properties , 2017 .

[63]  H. Appel,et al.  Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory. , 2014, Physical review letters.

[64]  Alán Aspuru-Guzik,et al.  Remarks on time-dependent [current]-density functional theory for open quantum systems. , 2013, Physical chemistry chemical physics : PCCP.

[65]  Shampa Raghunathan,et al.  Critical Examination of Explicitly Time-Dependent Density Functional Theory for Coherent Control of Dipole Switching. , 2011, Journal of chemical theory and computation.

[66]  M. Stone On One-Parameter Unitary Groups in Hilbert Space , 1932 .

[67]  D. Manolopoulos,et al.  Symplectic integrators for the multichannel Schrödinger equation , 1995 .

[68]  T. Klamroth,et al.  Controlling the high frequency response of H2 by ultra-short tailored laser pulses: A time-dependent configuration interaction study. , 2016, The Journal of chemical physics.

[69]  Joseph M. Kasper,et al.  Real time propagation of the exact two component time-dependent density functional theory. , 2016, The Journal of chemical physics.

[70]  S. Gray,et al.  Classical Hamiltonian structures in wave packet dynamics , 1994 .

[71]  Guanhua Chen,et al.  First‐principles Liouville–von Neumann equation for open systems and its applications , 2012 .

[72]  Xiaosong Li,et al.  Ultrafast Coherent Electron-Hole Separation Dynamics in a Fullerene Derivative. , 2011, The journal of physical chemistry letters.

[73]  D. Bauer,et al.  Time-dependent Kohn-Sham approach to quantum electrodynamics , 2010, 1011.4162.

[74]  R. Baer,et al.  Ab initio study of the alternating current impedance of a molecular junction. , 2004, Journal of Chemical Physics.

[75]  T. Thirunamachandran,et al.  Molecular quantum electrodynamics : an introduction to radiation-molecule interactions , 1998 .

[76]  Niranjan Govind,et al.  Near and Above Ionization Electronic Excitations with Non-Hermitian Real-Time Time-Dependent Density Functional Theory. , 2013, Journal of chemical theory and computation.

[77]  D. Manolopoulos,et al.  Symplectic integrators tailored to the time‐dependent Schrödinger equation , 1996 .

[78]  C. Aikens,et al.  Molecular Vibration Induced Plasmon Decay , 2017 .

[79]  N. Rega,et al.  From charge-transfer to a charge-separated state: a perspective from the real-time TDDFT excitonic dynamics. , 2014, Physical chemistry chemical physics : PCCP.

[80]  H. Schlegel,et al.  TD-CI simulation of the electronic optical response of molecules in intense fields: comparison of RPA, CIS, CIS(D), and EOM-CCSD. , 2011, The journal of physical chemistry. A.

[81]  Á. Rubio,et al.  A First-Principles Time-Dependent Density Functional Theory Framework for Spin and Time-Resolved Angular-Resolved Photoelectron Spectroscopy in Periodic Systems. , 2017, Journal of chemical theory and computation.

[82]  L'Huillier,et al.  Attosecond Pulse Trains Using High-Order Harmonics. , 1996, Physical review letters.

[83]  Á. Rubio,et al.  Dynamics of Charge-Transfer Processes with Time-Dependent Density Functional Theory. , 2013, The journal of physical chemistry letters.

[84]  Martin Head-Gordon,et al.  Computation of high-harmonic generation spectra of H2 and N2 in intense laser pulses using quantum chemistry methods and time-dependent density functional theory , 2012 .

[85]  John Parkhill,et al.  Nonadiabatic Dynamics for Electrons at Second-Order: Real-Time TDDFT and OSCF2. , 2015, Journal of chemical theory and computation.

[86]  H. Appel,et al.  Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry , 2016, Proceedings of the National Academy of Sciences.

[87]  Niranjan Govind,et al.  Comparison of Real-Time and Linear-Response Time-Dependent Density Functional Theories for Molecular Chromophores Ranging from Sparse to High Densities of States. , 2015, Journal of chemical theory and computation.

[88]  Xiaosong Li,et al.  Open-system electronic dynamics and thermalized electronic structure. , 2011, The Journal of chemical physics.

[89]  Optical response of small carbon clusters , 1996, physics/9612001.

[90]  Ivanov,et al.  Theory of high-harmonic generation by low-frequency laser fields. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[91]  Angel Rubio,et al.  Propagators for the time-dependent Kohn-Sham equations. , 2004, The Journal of chemical physics.

[92]  M. Gruebele,et al.  Shifted-update rotation: simple integration of the many-level Schrödinger equation to long times , 1995 .

[93]  A. Raab,et al.  On the Dirac–Frenkel/McLachlan variational principle , 2000 .

[94]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[95]  Angel Rubio,et al.  Time-dependent density-functional approach for biological chromophores: the case of the green fluorescent protein. , 2003, Physical review letters.

[96]  K. Ruud,et al.  Acceleration of Relativistic Electron Dynamics by Means of X2C Transformation: Application to the Calculation of Nonlinear Optical Properties. , 2016, Journal of chemical theory and computation.

[97]  A. D. McLachlan,et al.  A variational solution of the time-dependent Schrodinger equation , 1964 .

[98]  J. Broeckhove,et al.  On the equivalence of time-dependent variational-principles , 1988 .

[99]  R. McLachlan,et al.  Equivariant constrained symplectic integration , 1995 .

[100]  James B. Anderson,et al.  A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .

[101]  Xiaosong Li,et al.  The consequences of improperly describing oscillator strengths beyond the electric dipole approximation. , 2015, The Journal of chemical physics.

[102]  Loren Greenman,et al.  Implementation of the time-dependent configuration-interaction singles method for atomic strong-field processes , 2010 .

[103]  Christine M. Isborn,et al.  Electron dynamics with real-time time-dependent density functional theory , 2016 .

[104]  J. Autschbach,et al.  Calculation of static and dynamic linear magnetic response in approximate time-dependent density functional theory. , 2007, The Journal of chemical physics.

[105]  Frederick R Manby,et al.  Embedded Mean-Field Theory with Block-Orthogonalized Partitioning. , 2017, Journal of chemical theory and computation.

[106]  Spectral and temporal structures of high-order harmonic generation of Na in intense mid-ir laser fields , 2001 .

[107]  I. Tokatly Time-dependent density functional theory for many-electron systems interacting with cavity photons. , 2013, Physical review letters.

[108]  L. Keldysh,et al.  IONIZATION IN THE FIELD OF A STRONG ELECTROMAGNETIC WAVE , 1964 .

[109]  J. Frenkel,et al.  Wave mechanics: Advanced general theory , 1934 .

[110]  Bryan M. Wong,et al.  Real-Time Quantum Dynamics Reveals Complex, Many-Body Interactions in Solvated Nanodroplets. , 2016, Journal of chemical theory and computation.

[111]  Time-dependent density-functional theory of strong-field ionization of atoms by soft x rays , 2014, 1408.6067.

[112]  Patrick Norman,et al.  Beyond the electric-dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation. , 2015, The Journal of chemical physics.

[113]  Shampa Raghunathan,et al.  The Lack of Resonance Problem in Coherent Control with Real-Time Time-Dependent Density Functional Theory. , 2012, Journal of chemical theory and computation.

[114]  Niranjan Govind,et al.  Modeling Fast Electron Dynamics with Real-Time Time-Dependent Density Functional Theory: Application to Small Molecules and Chromophores. , 2011, Journal of chemical theory and computation.

[115]  Roberto Cammi,et al.  Equation of motion for the solvent polarization apparent charges in the polarizable continuum model: application to real-time TDDFT. , 2015, The journal of physical chemistry. A.

[116]  Triet S. Nguyen,et al.  Nonradiative Relaxation in Real-Time Electronic Dynamics OSCF2: Organolead Triiodide Perovskite. , 2016, The journal of physical chemistry. A.

[117]  R. Kosloff Time-dependent quantum-mechanical methods for molecular dynamics , 1988 .

[118]  R. Landauer,et al.  Generalized many-channel conductance formula with application to small rings. , 1985, Physical review. B, Condensed matter.

[119]  Lars Bojer Madsen,et al.  Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics , 2013, 1304.5904.

[120]  Mari Paz Calvo,et al.  The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..

[121]  Xiaosong Li,et al.  Solvent effects on intramolecular charge transfer dynamics in a fullerene derivative. , 2013, The journal of physical chemistry. A.

[122]  J. Autschbach,et al.  Calculation of origin-independent optical rotation tensor components in approximate time-dependent density functional theory. , 2006, The Journal of chemical physics.

[123]  Simen Kvaal,et al.  Ab initio quantum dynamics using coupled-cluster. , 2012, The Journal of chemical physics.

[124]  Lars Bojer Madsen,et al.  Time-dependent generalized-active-space configuration-interaction approach to photoionization dynamics of atoms and molecules , 2014, 1410.2138.

[125]  K. Lopata,et al.  Accelerated Broadband Spectra Using Transition Dipole Decomposition and Padé Approximants. , 2016, Journal of chemical theory and computation.

[126]  S. Chu,et al.  Role of the electronic structure and multielectron responses in ionization mechanisms of diatomic molecules in intense short-pulse lasers: An all-electron ab initio study , 2004 .

[127]  Time-resolved spectroscopy in time-dependent density functional theory: an exact condition. , 2014, Physical review letters.

[128]  M. Ruggenthaler,et al.  Rabi oscillations and few-level approximations in time-dependent density functional theory. , 2009, Physical review letters.

[130]  E K U Gross,et al.  Controlling the dynamics of many-electron systems from first principles: a combination of optimal control and time-dependent density-functional theory. , 2010, Physical review letters.

[131]  Francisco F. Ramirez,et al.  Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework. , 2014, The Journal of chemical physics.

[132]  Troy Van Voorhis,et al.  Simulating molecular conductance using real-time density functional theory , 2006 .

[133]  M. Beck,et al.  The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .

[134]  R. Landauer,et al.  Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988, IBM J. Res. Dev..

[135]  Feizhi Ding,et al.  An efficient method for calculating dynamical hyperpolarizabilities using real-time time-dependent density functional theory. , 2013, The Journal of chemical physics.

[136]  A. DePrince,et al.  Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory. , 2017, The journal of physical chemistry letters.

[137]  G. Bertsch,et al.  Magnetic circular dichroism in real-time time-dependent density functional theory. , 2010, The Journal of chemical physics.

[138]  R. Baer,et al.  Ab Initio Electrical Conductance of a Molecular Wire , 2003 .

[139]  B. Grammaticos,et al.  Three-dimensional time-dependent Hartree-Fock calculations of 16O + 16O and 40Ca + 40Ca fusion cross sections , 1978 .

[140]  Xavier Andrade,et al.  Towards a gauge invariant method for molecular chiroptical properties in TDDFT. , 2009, Physical chemistry chemical physics : PCCP.

[141]  B. Mennucci,et al.  Time-dependent non-equilibrium dielectric response in QM/continuum approaches. , 2015, The Journal of chemical physics.

[142]  R. Santra,et al.  Complex absorbing potentials in the framework of electron propagator theory. I. General formalism , 2002 .

[143]  H. Appel,et al.  Quantum electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory , 2014, 1403.5541.

[144]  T. Klamroth,et al.  Time-dependent configuration-interaction calculations of laser-pulse-driven many-electron dynamics: controlled dipole switching in lithium cyanide. , 2005, The Journal of chemical physics.

[145]  K. Ruud,et al.  Analytic calculations of nonlinear mixed electric and magnetic frequency-dependent molecular properties using London atomic orbitals: Buckingham birefringence. , 2009, Physical chemistry chemical physics : PCCP.

[146]  D. Bowler,et al.  Molecular conduction: do time-dependent simulations tell you more than the Landauer approach? , 2006, The Journal of chemical physics.

[147]  K. Ruud,et al.  Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes , 2015, ACS photonics.

[148]  T. Klamroth,et al.  Explicitly time-dependent coupled cluster singles doubles calculations of laser-driven many-electron dynamics. , 2011, The Journal of chemical physics.

[149]  Shampa Raghunathan,et al.  Coherent control and time-dependent density functional theory: towards creation of wave packets by ultrashort laser pulses. , 2012, The Journal of chemical physics.

[150]  A. Dutoi,et al.  Tracing molecular electronic excitation dynamics in real time and space. , 2010, The Journal of chemical physics.

[151]  D. Hochstuhl,et al.  Time-dependent restricted-active-space configuration-interaction method for the photoionization of many-electron atoms , 2012, 1207.5693.

[152]  Christoph R Jacob,et al.  Origin-independent calculation of quadrupole intensities in X-ray spectroscopy. , 2012, The Journal of chemical physics.

[153]  Lars Bojer Madsen,et al.  Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics. II. Extended formulation and numerical analysis , 2014 .

[154]  C. Peters,et al.  Generation of optical harmonics , 1961 .

[155]  K. Yabana,et al.  Oscillator strength distribution of C60 in the time-dependent density functional theory , 2009 .

[156]  K. Ishikawa,et al.  Time-dependent multiconfiguration self-consistent-field method based on the occupation-restricted multiple-active-space model for multielectron dynamics in intense laser fields , 2014, 1411.3077.

[157]  P. Corkum,et al.  Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.

[158]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[159]  S. Blanes,et al.  A pedagogical approach to the Magnus expansion , 2010 .

[160]  H. Kono,et al.  Intense laser-field ionization of H 2 enhanced by two-electron dynamics , 2002 .

[161]  Joshua J. Goings,et al.  Ab initio non-relativistic spin dynamics. , 2014, The Journal of chemical physics.

[162]  H. Bernhard Schlegel,et al.  Angle-Dependent Ionization of Small Molecules by Time-Dependent Configuration Interaction and an Absorbing Potential. , 2015, The journal of physical chemistry letters.

[163]  James Durbin,et al.  The fitting of time series models , 1960 .

[164]  Nancy Makri,et al.  Time‐dependent self‐consistent field (TDSCF) approximation for a reaction coordinate coupled to a harmonic bath: Single and multiple configuration treatments , 1987 .

[165]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[166]  K. Lopata,et al.  X-ray absorption in insulators with non-Hermitian real-time time-dependent density functional theory. , 2015, Journal of chemical theory and computation.

[167]  Weiss,et al.  Application of the imaginary time step method to the solution of the static Hartree-Fock problem , 1980 .

[168]  H. Meyer,et al.  Reflection-free complex absorbing potentials , 1995 .

[169]  K. Krieger,et al.  Optimal control of laser-induced spin–orbit mediated ultrafast demagnetization , 2015, 1506.02332.

[170]  John W. Negele,et al.  Time-dependent Hartree-Fock calculations for 16O + 16O and 40Ca + 40Ca reactions , 1977 .

[171]  A. DePrince,et al.  Linear Absorption Spectra from Explicitly Time-Dependent Equation-of-Motion Coupled-Cluster Theory. , 2016, Journal of chemical theory and computation.

[172]  Bertsch,et al.  Time-dependent local-density approximation in real time. , 1996, Physical review. B, Condensed matter.

[173]  H. Appel,et al.  Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space , 2015, Proceedings of the National Academy of Sciences.

[174]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[175]  D. Tannor,et al.  Introduction to Quantum Mechanics: A Time-Dependent Perspective , 2006 .

[176]  Manfred Lein,et al.  Strong-field ionization dynamics of a model H 2 molecule , 2002 .

[177]  Abraham Nitzan,et al.  Multiconfiguration time-dependent self-consistent field approximation for curve crossing in presence of a bath. A fast fourier transform study , 1988 .

[178]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[179]  T. Klamroth,et al.  Molecular response properties from explicitly time-dependent configuration interaction methods. , 2007, The Journal of chemical physics.

[180]  K. Ruud,et al.  Inside back cover. , 2017, Chemical communications.

[181]  E. Gross,et al.  Optimization schemes for selective molecular cleavage with tailored ultrashort laser pulses , 2011, 1102.3128.

[182]  Angel Rubio,et al.  Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system , 2012, Nature Communications.

[183]  L. Kronik,et al.  Parameter-free driven Liouville-von Neumann approach for time-dependent electronic transport simulations in open quantum systems , 2017 .

[184]  H. Schlegel,et al.  Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential. , 2014, The Journal of chemical physics.

[185]  P. Kramer,et al.  Geometry of the Time-Dependent Variational Principle in Quantum Mechanics , 1981 .