Coarse bifurcation studies of bubble flow lattice Boltzmann simulations

We demonstrate a “coarse time-stepper” based approach for the extraction of continuum-level stability and bifurcation information from kinetic theory based, LB simulations. Acting directly on the LB simulator, we sidestep the necessity of deriving macroscopic, explicitly closed continuum conservation equations. The approach is used to analyze the dynamics and the oscillatory instability of two-dimensional periodic arrays of gas bubbles rising in a liquid. ? 2004 Elsevier Ltd. All rights reserved.

[1]  Xiaowen Shan,et al.  Multicomponent lattice-Boltzmann model with interparticle interaction , 1995, comp-gas/9503001.

[2]  I. Eames,et al.  The Motion of High-Reynolds-Number Bubbles in Inhomogeneous Flows , 2000 .

[3]  Morteza Gharib,et al.  Experimental studies on the shape and path of small air bubbles rising in clean water , 2002 .

[4]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[5]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Sankaran Sundaresan,et al.  Modeling the hydrodynamics of multiphase flow reactors: Current status and challenges , 2000 .

[7]  Constantinos Theodoropoulos,et al.  Effective bifurcation analysis: a time-stepper-based approach , 2002 .

[8]  Mingming Wu,et al.  Path Instabilities of Rising Air Bubbles in a Hele-Shaw Cell , 1997 .

[9]  John G. Georgiadis,et al.  Migration of a van der Waals bubble: Lattice Boltzmann formulation , 2001 .

[10]  Gretar Tryggvason,et al.  A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations , 2003 .

[11]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[12]  C. W. Gear,et al.  'Coarse' integration/bifurcation analysis via microscopic simulators: Micro-Galerkin methods , 2002 .

[13]  Ioannis G. Kevrekidis,et al.  Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method , 2002, Journal of Fluid Mechanics.

[14]  Gautam M. Shroff,et al.  Stabilization of unstable procedures: the recursive projection method , 1993 .

[15]  Ioannis G. Kevrekidis,et al.  “Coarse” stability and bifurcation analysis using stochastic simulators: Kinetic Monte Carlo examples , 2001, nlin/0111038.

[16]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[17]  Liang-Shih Fan,et al.  Bubble wake dynamics in liquids and liquid-solid suspensions , 1990 .

[18]  J. Marsden,et al.  Reconstruction equations and the Karhunen—Loéve expansion for systems with symmetry , 2000 .

[19]  I. Kevrekidis,et al.  "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  C. Brücker Structure and dynamics of the wake of bubbles and its relevance for bubble interaction , 1999 .

[21]  X. He,et al.  Discretization of the Velocity Space in the Solution of the Boltzmann Equation , 1997, comp-gas/9712001.