THE EFFECT OF FRACTIONAL ORDER ON SYNCHRONIZATION OF TWO FRACTIONAL ORDER CHAOTIC AND HYPERCHAOTIC SYSTEMS

This paper studies the synchronization of two commensurate fractional order chaotic and hyperchaotic systems using nonlinear control technique. We discuss some stability conditions of three and four dimensional fractional order systems. We apply these stability conditions to chaos and hyperchaos synchronization. The effect of fractional order on synchronization of fractional order chaotic and hyperchaotic systems is shown; chaos synchronization of the commensurate fractional order Liu system is achieved, while it is not achieved in its integer order counterparts using the same nonlinear controllers. Furthermore, achieving chaos synchronization via nonlinear control of the novel hyperchaotic system is found just in the fractional order case when using the same nonlinear control laws. Numerical simulations are used to verify the theoretical analysis.

[1]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[2]  Jianying Yang,et al.  Dynamical models of happiness with fractional order , 2010 .

[3]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .

[4]  E. Lutz,et al.  Fractional transport equations for Lévy stable processes. , 2001, Physical review letters.

[5]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[6]  E. Ahmed,et al.  On fractional order differential equations model for nonlocal epidemics , 2007, Physica A: Statistical Mechanics and its Applications.

[7]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[8]  K. Diethelm AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 1997 .

[9]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[10]  Ravi P. Agarwal,et al.  Asymptotic integration of some nonlinear differential equations with fractional time derivative , 2011 .

[11]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[12]  K. A. Lazopoulos Non-local continuum mechanics and fractional calculus , 2006 .

[13]  A. Matouk Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system , 2009 .

[14]  N. Laskin Fractional market dynamics , 2000 .

[15]  Xing-yuan Wang,et al.  Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control , 2009 .

[16]  D. Kusnezov,et al.  Quantum Levy Processes and Fractional Kinetics , 1999, chao-dyn/9901002.

[17]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[18]  Zengqiang Chen,et al.  A novel hyperchaos system only with one equilibrium , 2007 .

[19]  N. Engheta On fractional calculus and fractional multipoles in electromagnetism , 1996 .

[20]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[21]  Ahmed Sadek Hegazi,et al.  Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system , 2011, Appl. Math. Lett..

[22]  A. E. Matouk,et al.  Dynamical analysis, feedback control and synchronization of Liu dynamical system , 2008 .

[23]  A. E. M. El Misiery,et al.  On a fractional model for earthquakes , 2006, Appl. Math. Comput..

[24]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[25]  Nathalie Corson,et al.  Synchronization of Chaotic fractional-Order Systems via Linear Control , 2010, Int. J. Bifurc. Chaos.

[26]  Dumitru Baleanu,et al.  Fractional-Order Variational Calculus with Generalized Boundary Conditions , 2011 .

[27]  Elsayed Ahmed,et al.  On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems , 2006 .

[28]  Reyad El-Khazali,et al.  Fractional-order dynamical models of love , 2007 .

[29]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[30]  Chuandong Li,et al.  Lag synchronization of hyperchaos with application to secure communications , 2005 .

[31]  Ravi P. Agarwal,et al.  Asymptotically Linear Solutions for Some Linear Fractional Differential Equations , 2010 .

[32]  V. E. Tarasov,et al.  Fractional Fokker-Planck equation for fractal media. , 2005, Chaos.

[33]  A. E. Matouk,et al.  Chaos Synchronization between Two Different Fractional Systems of Lorenz Family , 2009 .

[34]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[35]  H. N. Agiza,et al.  Adaptive synchronization of Chua's circuits with fully unknown parameters , 2006 .

[36]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[37]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[38]  H. N. Agiza,et al.  Synchronization and adaptive synchronization of nuclear spin generator system , 2001 .

[39]  Ahmed M. A. El-Sayed,et al.  On the fractional-order logistic equation , 2007, Appl. Math. Lett..

[40]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Qionghua Wang,et al.  A fractional-order hyperchaotic system and its synchronization , 2009 .

[42]  R. Bagley,et al.  The fractional order state equations for the control of viscoelastically damped structures , 1989 .

[43]  A. El-Sayed,et al.  Fractional-order diffusion-wave equation , 1996 .