The epilepsy, the protease inhibitor and the dodecamer: progressive myoclonus epilepsy, cystatin b and a 12-mer repeat expansion

Progressive myoclonus epilepsy 1 (EPM1) or Unverricht-Lundborg disease is a human autosomal recessive neurodegenerative disorder caused by mutations in cystatin B (CSTB). The CSTB gene maps to human chromosome 21 and encodes an inhibitor of lysosomal cysteine proteases. Five point mutations have been found, two of which are seen in numerous unrelated patients. However, the main CSTB mutation in EPM1, even among patients of different ethnic origins, is an expansion of a dodecamer repeat (CCCCGCCCCGCG) in the 5′ flanking area of CSTB. Most normal alleles contain either two or three repeats, while rarer normal alleles that are highly unstable contain between 12 and 17 repeats. Mutant expanded alleles have been reported to contain between 30 and 80 copies and are also highly unstable, particularly via parental transmission. There is no apparent correlation between mutant repeat length and disease phenotype. While the repeat expansion is outside the CSTB transcriptional unit, it results in a marked decrease in CSTB expression, at least in certain cell types in vitro. Cstb homozygous knockout mice show some parallels to the phenotype of human EPM1 including myoclonic seizures, development of ataxia and neuropathological changes associated with cell loss via apoptosis. Loss of CSTB function due to mutations is consistent with the observed neurodegenerative pathology and phenotype, but the functional link to the epileptic phenotype of EPM1 remains largely unknown.

[1]  A. Baba,et al.  Roles of cathepsins in reperfusion-induced apoptosis in cultured astrocytes , 2003, Neurochemistry International.

[2]  R. Myers,et al.  Neuropathological Changes in a Mouse Model of Progressive Myoclonus Epilepsy: Cystatin B Deficiency and Unverricht‐Lundborg Disease , 2002, Journal of neuropathology and experimental neurology.

[3]  M. Melli,et al.  New insights into the molecular basis of progressive myoclonus epilepsy: a multiprotein complex with cystatin B. , 2002, Human molecular genetics.

[4]  V. Turk,et al.  Apoptotic Pathways: Involvement of Lysosomal Proteases , 2002, Biological chemistry.

[5]  G. Salvesen,et al.  Regulating cysteine protease activity: essential role of protease inhibitors as guardians and regulators. , 2002, Current pharmaceutical design.

[6]  C. Buresi,et al.  Haplotype study of West European and North African Unverricht-Lundborg chromosomes: evidence for a few founder mutations , 2002, Human Genetics.

[7]  M. Tosetti,et al.  Brainstem involvement in Unverricht–Lundborg disease (EPM1): An MRI and 1H MRS study , 2002, Neurology.

[8]  A. Lehesjoki,et al.  Reduced cystatin B activity correlates with enhanced cathepsin activity in progressive myoclonus epilepsy , 2002, Annals of medicine.

[9]  G. Stephanopoulos,et al.  A compendium of gene expression in normal human tissues. , 2001, Physiological genomics.

[10]  R. Joshi,et al.  Molecular Dynamics Studies of Trinucleotide Repeat DNA Involved in Neurodegenerative Disorders , 2001, Journal of biomolecular structure & dynamics.

[11]  R I Richards,et al.  Dynamic mutations: a decade of unstable expanded repeats in human genetic disease. , 2001, Human molecular genetics.

[12]  S. Brahmachari,et al.  Intramolecular i-motif Structure at Acidic pH for Progressive Myoclonus Epilepsy (EPM1) Repeat d(CCCCGCCCCGCG)n , 2001, Journal of biomolecular structure & dynamics.

[13]  D. Dash,et al.  Progressive Myoclonus Epilepsy [EPM1] repeat d(CCCCGCCCCGCG)n forms folded hairpin structures at physiological pH , 2001, Journal of biomolecular structure & dynamics.

[14]  A. Korczyn,et al.  Unverricht–Lundborg disease in a five-generation Arab family , 2001, Neurology.

[15]  D. Turk,et al.  Lysosomal cysteine proteases: facts and opportunities , 2001, The EMBO journal.

[16]  R. Myers,et al.  Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. , 2001, Human molecular genetics.

[17]  K. Yamakawa,et al.  Advances in the genetics of progressive myoclonus epilepsy. , 2001, American journal of medical genetics.

[18]  K. Usdin,et al.  Tetraplex formation by the progressive myoclonus epilepsy type‐1 repeat: implications for instability in the repeat expansion diseases , 2001, FEBS letters.

[19]  G Vergnaud,et al.  Minisatellites: mutability and genome architecture. , 2000, Genome research.

[20]  K. Usdin,et al.  DNA repeat expansions and human disease , 2000, Cellular and Molecular Life Sciences CMLS.

[21]  T. Joensuu,et al.  Characterization of the cystatin B gene promoter harboring the dodecamer repeat expanded in progressive myoclonus epilepsy, EPM1. , 2000, Gene.

[22]  S. Antonarakis,et al.  Mutation nomenclature extensions and suggestions to describe complex mutations: A discussion , 2000 .

[23]  G. Rouleau,et al.  Instability of the EPM1 minisatellite. , 1999, Human molecular genetics.

[24]  S. Antonarakis,et al.  Altered spacing of promoter elements due to the dodecamer repeat expansion contributes to reduced expression of the cystatin B gene in EPM1. , 1999, Human molecular genetics.

[25]  R. Urrutia,et al.  Sp1 and Its Likes: Biochemical and Functional Predictions for a Growing Family of Zinc Finger Transcription Factors , 1999, Annals of the New York Academy of Sciences.

[26]  Len A. Pennacchio,et al.  Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice , 1998, Nature Genetics.

[27]  S. Antonarakis,et al.  A PCR amplification method reveals instability of the dodecamer repeat in progressive myoclonus epilepsy (EPM1) and no correlation between the size of the repeat and age at onset. , 1998, American journal of human genetics.

[28]  S. S. Smith,et al.  Stalling of human DNA (cytosine-5) methyltransferase at single-strand conformers from a site of dynamic mutation. , 1998, Journal of molecular biology.

[29]  M. Burmeister,et al.  Novel cystatin B mutation and diagnostic PCR assay in an Unverricht-Lundborg progressive myoclonus epilepsy patient. , 1997, American journal of medical genetics.

[30]  M. Burmeister,et al.  G to C transversion at a splice acceptor site causes exon skipping in the cystatin B gene. , 1997, Mutation research.

[31]  A. Pini,et al.  Familial Unverricht‐Lundborg Disease: A Clinical, Neurophysiologic, and Genetic Study , 1997, Epilepsia.

[32]  C. Buresi,et al.  Allelic heterogeneity of mediterranean myoclonus and the cystatin B gene , 1997, Annals of neurology.

[33]  Alain Malafosse,et al.  Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy , 1997, Nature.

[34]  Len A. Pennacchio,et al.  Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPM1 , 1997, Nature Genetics.

[35]  J. Rommens,et al.  Unstable insertion in the 5′ flanking region of the cystatin B gene is the most common mutation in progressive myoclonus epilepsy type 1, EPM1 , 1997, Nature Genetics.

[36]  D. Turk,et al.  Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. , 1997, Biological chemistry.

[37]  M C Peitsch,et al.  Identification of mutations in cystatin B, the gene responsible for the Unverricht-Lundborg type of progressive myoclonus epilepsy (EPM1). , 1997, American journal of human genetics.

[38]  R. Gellibolian,et al.  Long CCG triplet repeat blocks exclude nucleosomes: a possible mechanism for the nature of fragile sites in chromosomes. , 1996, Journal of molecular biology.

[39]  R. Myers,et al.  Isolation and characterization of the mouse cystatin B gene. , 1996, Genome research.

[40]  J. Griffith,et al.  Methylation of Expanded CCG Triplet Repeat DNA from Fragile X Syndrome Patients Enhances Nucleosome Exclusion* , 1996, The Journal of Biological Chemistry.

[41]  S. Antonarakis,et al.  Cloning of 559 potential exons of genes of human chromosome 21 by exon trapping. , 1996, Genome research.

[42]  R. Myers,et al.  Progressive myoclonus epilepsy EPM1 locus maps to a 175-kb interval in distal 21q. , 1996, American journal of human genetics.

[43]  V. Willour,et al.  Construction of a 750-kb bacterial clone contig and restriction map in the region of human chromosome 21 containing the progressive myoclonus epilepsy gene. , 1996, Genome research.

[44]  P. D. de Jong,et al.  A 405-kb cosmid contig and HindIII restriction map of the progressive myoclonus epilepsy type 1 (EPM1) candidate region in 21q22.3. , 1995, Genomics.

[45]  S. S. Smith,et al.  Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. S. Smith,et al.  Methylation of slipped duplexes, snapbacks and cruciforms by human DNA(cytosine-5)methyltransferase. , 1995, Nucleic acids research.

[47]  F. Andermann,et al.  Sweat gland vacuoles in Unverricht‐Lundborg disease , 1994, Neurology.

[48]  J. Cheng,et al.  Isolation and mapping of human chromosome 21 cDNA: progress in constructing a chromosome 21 expression map. , 1994, Genomics.

[49]  A. Chapelle,et al.  PME of Unverricht-Lundborg type in the Mediterranean region: linkage and linkage disequilibrium confirm the assignment to the EPM1 locus , 1994, Human Genetics.

[50]  B. Wilder,et al.  Progressive myoclonus epilepsy of Unverricht‐Lundborg type , 1993, Neurology.

[51]  F. Andermann,et al.  Unverricht‐Lundborg disease: Absence of nonallelic genetic heterogeneity , 1993, Annals of neurology.

[52]  A. Chapelle,et al.  Disease gene mapping in isolated human populations: the example of Finland. , 1993, Journal of medical genetics.

[53]  F. Andermann,et al.  Progressive Myoclonus Epilepsies: Clinical and Genetic Aspects , 1993 .

[54]  E. Lander,et al.  Localization of the EPM1 gene for progressive myoclonus epilepsy on chromosome 21: linkage disequilibrium allows high resolution mapping. , 1993, Human molecular genetics.

[55]  A. Chapelle,et al.  Linkage studies in progressive myoclonus epilepsy , 1992, Neurology.

[56]  V. Turk,et al.  Isolation and characterization of bovine stefin B. , 1992, Biological chemistry Hoppe-Seyler.

[57]  A. Chapelle,et al.  Identical genetic locus for Baltic and Mediterranean myoclonus , 1992, The Lancet.

[58]  W. Bode,et al.  cystatins: protein inhibitors of cysteine proteinases , 2001 .

[59]  A. de la Chapelle,et al.  Localization of a gene for progressive myoclonus epilepsy to chromosome 21q22. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[60]  N. Sato,et al.  Molecular cloning and sequencing of cDNA for rat cystatin β , 1990 .

[61]  R. Huber,et al.  The refined 2.4 A X‐ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. , 1990, The EMBO journal.

[62]  E. Auerswald,et al.  N-terminal variants of recombinant stefin B: effect on affinity for papain and cathepsin B. , 1990, Biological chemistry Hoppe-Seyler.

[63]  R. Michelucci,et al.  The Ramsay Hunt syndrome revisited: Mediterranean myoclonus versus mitochondrial encephalomyopathy with ragged‐red fibers and Baltic myoclonus , 1990, Acta neurologica Scandinavica.

[64]  J. Kos,et al.  Mechanism of inhibition of papain by chicken egg white cystatin , 1989, FEBS letters.

[65]  W. Bode,et al.  The 2.0 A X‐ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. , 1988, The EMBO journal.

[66]  A. Barrett,et al.  Identification of the probable inhibitory reactive sites of the cysteine proteinase inhibitors human cystatin C and chicken cystatin. , 1987, The Journal of biological chemistry.

[67]  A. Barrett,et al.  Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. , 1986, The Journal of biological chemistry.

[68]  F. Andermann,et al.  Progressive myoclonus epilepsies: specific causes and diagnosis. , 1986, The New England journal of medicine.

[69]  A. Barrett,et al.  Amino acid sequence of the intracellular cysteine proteinase inhibitor cystatin B from human liver. , 1985, Biochemical and biophysical research communications.

[70]  T. Wienker,et al.  Progressive myoclonus epilepsy , 1979, Human Genetics.

[71]  M. Koskiniemi,et al.  Progressive myoclonus epilepsy: genetic and nosological aspects with special reference to 107 Finnish patients , 1979, Clinical genetics.

[72]  M. Koskiniemi,et al.  PROGRESSIVE MYOCLONUS EPILEPSY , 1974 .

[73]  K. Kristensson,et al.  NEUROPATHOLOGICAL STUDIES IN THREE SCANDINAVIAN CASES OF PROGRESSIVE MYOCLONUS EPILEPSY , 1969, Acta neurologica Scandinavica.

[74]  C. Ware,et al.  Genomic context drives SCA7 CAG repeat instability, while expressed SCA7 cDNAs are intergenerationally and somatically stable in transgenic mice. , 2003, Human molecular genetics.

[75]  A. Lehesjoki Clinical features and genetics of Unverricht-Lundborg disease. , 2002, Advances in neurology.

[76]  K. Kagitani-Shimono,et al.  Unverricht-Lundborg disease with cystatin B gene abnormalities. , 2002, Pediatric neurology.

[77]  F. Andermann,et al.  Progressive myoclonus epilepsies: clinical and neurophysiological diagnosis. , 1991, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[78]  Y. Uchiyama,et al.  Molecular cloning and sequencing of cDNA for rat cystatin beta. , 1990, Nucleic acids research.

[79]  M. Haltia,et al.  Progressive myoclonus epilepsy. A clinical and histopathological study. , 1974, Acta neurologica Scandinavica.