Mechanochemical reactions and syntheses of oxides.

Technological and scientific challenges coupled with environmental considerations have prompted a search for simple and energy-efficient syntheses and processing routes of materials. This tutorial review provides an overview of recent research efforts in non-conventional reactions and syntheses of oxides induced by mechanical action. It starts with a brief account of the history of mechanochemistry. Ensuing discussions will review the progress in homogeneous and heterogeneous mechanochemical reactions in oxides of various structures. The review demonstrates that the event of mechanically induced reactions provides novel opportunities for the non-thermal manipulation of materials and for the tailoring of their properties.

[1]  P. Heitjans,et al.  Mechanosynthesis of nanocrystalline fayalite, Fe2SiO4. , 2012, Chemical communications.

[2]  V. Šepelák,et al.  Transformations in oxides induced by high-energy ball-milling. , 2012, Dalton transactions.

[3]  P. Heitjans,et al.  Mechanosynthesis of Solid Electrolytes: Preparation, Characterization, and Li Ion Transport Properties of Garnet-Type Al-Doped Li7La3Zr2O12 Crystallizing with Cubic Symmetry , 2012 .

[4]  M. Kosec,et al.  Mechanochemical synthesis of NaNbO3: A complementary study of reaction mechanism using Raman spectroscopy and quadrupole perturbed 23Na nuclear magnetic resonance , 2012 .

[5]  V. Šepelák,et al.  Mechanochemistry: from mechanical degradation to novel materials properties , 2012 .

[6]  P. Heitjans,et al.  Nonequilibrium structure of Zn2SnO4 spinel nanoparticles , 2012 .

[7]  James Mack,et al.  Mechanochemistry: opportunities for new and cleaner synthesis. , 2012, Chemical Society reviews.

[8]  P. Heitjans,et al.  Mechanically Induced Phase Transformation of γ-Al2O3 into α-Al2O3. Access to Structurally Disordered γ-Al2O3 with a Controllable Amount of Pentacoordinated Al Sites , 2011 .

[9]  Adam Mann High-temperature superconductivity at 25: Still in suspense , 2011, Nature.

[10]  P. Heitjans,et al.  High-resolution 27Al MAS NMR spectroscopic studies of the response of spinel aluminates to mechanical action , 2011 .

[11]  P. Heitjans,et al.  Mechanosynthesized BiFeO3 Nanoparticles with Highly Reactive Surface and Enhanced Magnetization , 2011 .

[12]  P. Heitjans,et al.  A rapid one-step mechanosynthesis and characterization of nanocrystalline CaFe2O4 with orthorhombic structure , 2010 .

[13]  P. Heitjans,et al.  Ion Dynamics at Interfaces: Nuclear Magnetic Resonance Studies , 2009 .

[14]  Donghai Mei,et al.  Coordinatively Unsaturated Al3+ Centers as Binding Sites for Active Catalyst Phases of Platinum on γ-Al2O3 , 2009, Science.

[15]  P. Heitjans,et al.  A One-Step Mechanochemical Route to Core−Shell Ca2SnO4 Nanoparticles Followed by 119Sn MAS NMR and 119Sn Mössbauer Spectroscopy , 2009 .

[16]  P. Heitjans,et al.  Diffusion in Nanocrystalline Ion Conductors Studied by Solid State NMR and Impedance Spectroscopy , 2009 .

[17]  P. Heitjans,et al.  Tuning the Li diffusivity of poor ionic conductors by mechanical treatment: High Li conductivity of strongly defective LiTaO3 nanoparticles , 2008 .

[18]  P. Heitjans,et al.  Magnetization enhancement in nanosized MgFe2O4 prepared by mechanosynthesis , 2007 .

[19]  P. Heitjans,et al.  Nanocrystalline Nickel Ferrite, NiFe2O4: Mechanosynthesis, Nonequilibrium Cation Distribution, Canted Spin Arrangement, and Magnetic Behavior , 2007 .

[20]  P. Heitjans,et al.  Nonequilibrium cation distribution in nanocrystalline MgAl2O4 spinel studied by 27Al magic-angle spinning NMR , 2006 .

[21]  P. Heitjans,et al.  Nonequilibrium Cation Distribution, Canted Spin Arrangement, and Enhanced Magnetization in Nanosized MgFe2O4 Prepared by a One-Step Mechanochemical Route , 2006 .

[22]  K. Becker,et al.  Mechanochemie: Chemie mit dem Hammer , 2005 .

[23]  H. Clausen‐Schaumann,et al.  Mechanochemistry: the mechanical activation of covalent bonds. , 2005, Chemical reviews.

[24]  V. Šepelák,et al.  Nanocrystalline Ferrites Prepared by Mechanical Activation and Mechanosynthesis , 2005 .

[25]  L. Takács M. Carey Lea, the first mechanochemist , 2004 .

[26]  P. Heitjans,et al.  Fast diffusion in nanocrystalline ceramics prepared by ball milling , 2004 .

[27]  P. Heitjans,et al.  Diffusion and Ionic Conduction in Nanocrystalline Ceramics , 2003 .

[28]  D. Marx,et al.  Towards "mechanochemistry": mechanically induced isomerizations of thiolate-gold clusters. , 2003, Angewandte Chemie.

[29]  V. Šepelák,et al.  Enhanced magnetisation in nanocrystalline high-energy milled MgFe2O4 , 2003 .

[30]  V. Šepelák,et al.  Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite , 2003 .

[31]  V. Šepelák,et al.  Mechanochemical Reduction of Magnesium Ferrite , 2002 .

[32]  S. Saxena,et al.  High-Pressure Raman Spectroscopic Study of Spinel (ZnCr2O4) , 2002 .

[33]  R. Street,et al.  MAGNETIC PROPERTIES OF ULTRAFINE MNFE2O4 POWDERS PREPARED BY MECHANOCHEMICAL PROCESSING , 2001 .

[34]  V. Šepelák,et al.  Mechanically Induced Cation Redistribution and Spin Canting in Nickel Ferrite , 2000 .

[35]  V. Šepelák,et al.  Structural disorder in the high-energy milled magnesium ferrite , 2000 .

[36]  V. Boldyrev,et al.  Mechanochemistry of Solids: Past, Present, and Prospects , 2000 .

[37]  V. Šepelák,et al.  Mössbauer Studies in the Mechanochemistry of Spinel Ferrites , 2000 .

[38]  J. Ho,et al.  Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders , 2000 .

[39]  V. Šepelák,et al.  Surface Structure of Mechanically Activated and of Mechanosynthesized Zinc Ferrite , 1999 .

[40]  D. Wood,et al.  Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600 °C from in situ neutron diffraction , 1999 .

[41]  V. Šepelák,et al.  Mechanically induced cation redistribution in ZnFe2O4 and its thermal stability , 1997 .

[42]  M. Nastasi,et al.  Cation disorder in high-dose, neutron-irradiated spinel , 1995 .

[43]  V. Boldyrev,et al.  Mechanochemistry and mechanical activation of solids , 1990 .

[44]  M. C. Lea Disruption of the silver haloid molecule by mechanical force , 1892, American Journal of Science.

[45]  Tomislav Friščić,et al.  Real-time and in situ monitoring of mechanochemical milling reactions. , 2013, Nature chemistry.

[46]  P. Baláž Mechanochemistry and Nanoscience , 2008 .

[47]  M. Senna,et al.  Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies , 2001 .

[48]  V. Šepelák,et al.  Structural disorder in mechanosynthesized zinc ferrite , 1998 .

[49]  V. Gold Compendium of chemical terminology , 1987 .

[50]  S. S. Handbuch der allgemeinen Chemie , 2022, Nature.