Mind the Microgap in Iridescent Cellulose Nanocrystal Films

A new photonic structure is produced from cellulose nanocrystal iridescent films reflecting both right and left circularly polarized light. Micrometer-scale planar gaps perpendicular to the films' cross-section between two different left-handed films' cholesteric domains are impregnated with a nematic liquid crystal. This photonic feature is reversibly tuned by the application of an electric field or a temperature variation.

[1]  M. MacLachlan,et al.  Structure and transformation of tactoids in cellulose nanocrystal suspensions , 2016, Nature Communications.

[2]  M. Godinho,et al.  Sensing surface morphology of biofibers by decorating spider silk and cellulosic filaments with nematic microdroplets , 2016, Proceedings of the National Academy of Sciences.

[3]  D. Gray,et al.  Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy , 2015, Materials.

[4]  D. Gray,et al.  Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D “coffee-stain” rings , 2015, Cellulose.

[5]  Ping Liu,et al.  Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique. , 2014, Biomacromolecules.

[6]  M. MacLachlan,et al.  NMR of guest‐host systems: 8CB in chiral nematic porous glasses , 2014, Magnetic resonance in chemistry : MRC.

[7]  Dagang Liu,et al.  Structure–color mechanism of iridescent cellulose nanocrystal films , 2014 .

[8]  D. Gray,et al.  Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[9]  Jeremy J. Baumberg,et al.  Digital Color in Cellulose Nanocrystal Films , 2014, ACS applied materials & interfaces.

[10]  Hanne M. van der Kooij,et al.  Controlled, Bio-inspired Self-Assembly of Cellulose-Based Chiral Reflectors , 2014, Advanced optical materials.

[11]  L. Bergström,et al.  Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  E. Fortunato,et al.  Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors , 2014, Nanotechnology.

[13]  L. Bergström,et al.  Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .

[14]  M. MacLachlan,et al.  Tuning the iridescence of chiral nematic cellulose nanocrystals and mesoporous silica films by substrate variation. , 2013, Chemical communications.

[15]  Kevin E. Shopsowitz,et al.  Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals. , 2013, ACS applied materials & interfaces.

[16]  Michel Mitov,et al.  Cholesteric Liquid Crystals with a Broad Light Reflection Band , 2012, Advanced materials.

[17]  Jeremy J. Baumberg,et al.  Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.

[18]  O. Ikkala,et al.  SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions , 2012, Cellulose.

[19]  K. Ishikawa,et al.  Broadband Cavity‐Mode Lasing from Dye‐Doped Nematic Liquid Crystals Sandwiched by Broadband Cholesteric Liquid Crystal Bragg Reflectors , 2010, Advanced materials.

[20]  W. Hamad,et al.  Structure–process–yield interrelations in nanocrystalline cellulose extraction , 2010 .

[21]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[22]  E. Cranston,et al.  Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. , 2006, Biomacromolecules.

[23]  Michel Mitov,et al.  Going beyond the reflectance limit of cholesteric liquid crystals , 2006, Nature materials.

[24]  Jisoo Hwang,et al.  Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions , 2005, Nature materials.

[25]  Junji Watanabe,et al.  Effect of Phase Retardation on Defect‐Mode Lasing in Polymeric Cholesteric Liquid Crystals , 2004 .

[26]  P. Gennes Solvent evaporation of spin cast films: "crust" effects , 2001, cond-mat/0111117.

[27]  D. Gray,et al.  Induced Circular Dichroism of Chiral Nematic Cellulose Films , 2001 .

[28]  D. Gray,et al.  Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose , 1998 .

[29]  Louis Godbout,et al.  Solid self-assembled films of cellulose with chiral nematic order and optically variable properties , 1998 .

[30]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[31]  D. Mlynski,et al.  Characteristic matrix method for stratified anisotropic media : optical properties of special configurations , 1991 .

[32]  D. W. Berreman,et al.  Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation , 1972 .

[33]  S. Caveney Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  H. Vries,et al.  Rotatory Power and Other Optical Properties of Certain Liquid Crystals , 1951 .