On the Number of Edges of Fan-Crossing Free Graphs

A graph drawn in the plane with $$n$$n vertices is $$k$$k-fan-crossing free for $$k \geqslant 2$$k⩾2 if there are no $$k+1$$k+1 edges $$g,e_1,\ldots , e_k$$g,e1,…,ek, such that $$e_1,e_2,\ldots ,e_k$$e1,e2,…,ek have a common endpoint and $$g$$g crosses all $$e_i$$ei. We prove a tight bound of $$4n-8$$4n-8 on the maximum number of edges of a $$2$$2-fan-crossing free graph, and a tight $$4n-9$$4n-9 bound for a straight-edge drawing. For $$k \geqslant 3$$k⩾3, we prove an upper bound of $$3(k-1)(n-2)$$3(k-1)(n-2) edges. We also discuss generalizations to monotone graph properties.

[1]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[2]  János Pach,et al.  Relaxing Planarity for Topological Graphs , 2002, JCDCG.

[3]  Vladimir P. Korzhik,et al.  Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2009, J. Graph Theory.

[4]  Giuseppe Liotta,et al.  Fáry's Theorem for 1-Planar Graphs , 2012, COCOON.

[5]  Walter Didimo,et al.  Drawing graphs with right angle crossings , 2009, Theor. Comput. Sci..

[6]  Micha Sharir,et al.  Quasi-planar graphs have a linear number of edges , 1995, GD.

[7]  János Pach,et al.  Graphs drawn with few crossings per edge , 1996, GD.

[8]  Farhad Shahrokhi,et al.  Applications of the crossing number , 1994, SCG '94.

[9]  János Pach,et al.  The Number of Edges in k-Quasi-planar Graphs , 2011, SIAM J. Discret. Math..

[10]  Micha Sharir,et al.  Topological Graphs with No Large Grids , 2005, Graphs Comb..

[11]  Giuseppe Liotta,et al.  Right angle crossing graphs and 1-planarity , 2013, Discret. Appl. Math..

[12]  Walter Didimo Density of straight-line 1-planar graph drawings , 2013, Inf. Process. Lett..

[13]  Eyal Ackerman,et al.  On the Maximum Number of Edges in Topological Graphs with no Four Pairwise Crossing Edges , 2006, SCG '06.

[14]  Alexander Grigoriev,et al.  Algorithms for Graphs Embeddable with Few Crossings per Edge , 2005, Algorithmica.

[15]  Michael A. Bekos,et al.  The Straight-Line RAC Drawing Problem is NP-Hard , 2010, J. Graph Algorithms Appl..

[16]  János Pach,et al.  Improving the Crossing Lemma by Finding More Crossings in Sparse Graphs , 2006, Discret. Comput. Geom..