New robust tests for the parameters of the Weibull distribution for complete and censored data
暂无分享,去创建一个
[1] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[2] D G Hoel,et al. A representation of mortality data by competing risks. , 1972, Biometrics.
[3] J. Tukey. Mathematics and the Picturing of Data , 1975 .
[4] J. Kalbfleisch,et al. The Statistical Analysis of Failure Time Data , 1980 .
[5] A curtailed test for the shape parameter of the Weibull distribution , 1982 .
[6] D. Ruppert. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[7] R. Y. Liu,et al. On a notion of simplicial depth. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[8] Regina Y. Liu. On a Notion of Data Depth Based on Random Simplices , 1990 .
[9] D. G. Simpson,et al. Breakdown robustness of tests , 1990 .
[10] Stefun D. Leigh. U-Statistics Theory and Practice , 1992 .
[11] C. W. Coakley,et al. THE MAXIMUM RESISTANCE OF TESTS , 1994 .
[12] Jian Zhang,et al. The sample breakdown points of tests , 1996 .
[13] W. Kahle. Estimation of the parameters of the Weibull distribution for censored samples , 1996 .
[14] Zhenmin Chen,et al. Statistical inference about the shape parameter of the Weibull distribution , 1997 .
[15] B. Price,et al. Robust Planning and Analysis of Experiments , 1997 .
[16] P. Rousseeuw,et al. Constructing the bivariate Tukey median , 1998 .
[17] W K Fung,et al. Method of medians for lifetime data with Weibull models. , 1999, Statistics in medicine.
[18] Regina Y. Liu,et al. Regression depth. Commentaries. Rejoinder , 1999 .
[19] R. Serfling,et al. General notions of statistical depth function , 2000 .
[20] Structural properties and convergence results for contours of sample statistical depth functions , 2000 .
[21] K. Mosler. "Multivariate Dispersion, Central Regions, and Depth": The Lift Zonoid Approach , 2002 .
[22] I. Mizera. On depth and deep points: a calculus , 2002 .
[23] K. Mosler. Multivariate Dispersion, Central Regions, and Depth , 2002 .
[24] J. Lawless. Statistical Models and Methods for Lifetime Data , 2002 .
[25] K. Mosler. Central Regions and Dependency , 2003 .
[26] C. Müller,et al. Location–Scale Depth , 2004 .
[27] C. Müller. Depth estimators and tests based on the likelihood principle with application to regression , 2005 .
[28] Minghua Chen,et al. Robust estimating equation based on statistical depth , 2006 .
[29] Stanislav Katina,et al. Calculation of simplicial depth estimators for polynomial regression with applications , 2007, Comput. Stat. Data Anal..
[30] Jun Li,et al. Multivariate spacings based on data depth: I. Construction of nonparametric multivariate tolerance regions , 2008, 0806.2970.
[31] Horst Rinne,et al. The Weibull Distribution: A Handbook , 2008 .
[32] Christine H. Müller,et al. Distribution-free tests for polynomial regression based on simplicial depth , 2009, J. Multivar. Anal..
[33] Mario Romanazzi. Data depth, random simplices and multivariate dispersion , 2009 .
[34] J. Romo,et al. On the Concept of Depth for Functional Data , 2009 .
[35] Aurora Torrente,et al. Robust depth-based tools for the analysis of gene expression data. , 2010, Biostatistics.
[36] Christine H. Müller,et al. Depth notions for orthogonal regression , 2010, J. Multivar. Anal..
[37] Liesa Denecke,et al. Estimators and Tests based on Likelihood-Depth with Application to Weibull Distribution, Gaussian and Gumbel Copula , 2010 .
[38] Christine H. Müller,et al. Tests for multiple regression based on simplicial depth , 2010, J. Multivar. Anal..
[39] Christine H. Müller,et al. Robust estimators and tests for bivariate copulas based on likelihood depth , 2011, Comput. Stat. Data Anal..
[40] Kris Boudt,et al. Robust explicit estimators of Weibull parameters , 2011 .
[41] Yonggang Hu,et al. Generalized Mahalanobis depth in the reproducing kernel Hilbert space , 2011 .
[42] C. Müller,et al. Consistency and robustness of tests and estimators based on depth , 2012 .
[43] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .