Three-Class Association Schemes on Galois Rings in Characteristic 4
暂无分享,去创建一个
[1] R. W. Goldbach,et al. The Structure of Imprimitive Non-symmetric 3-Class Association Schemes , 1996, Eur. J. Comb..
[2] Edwin R. van Dam,et al. Association Schemes Related to Kasami Codes and Kerdock Sets , 1999, Des. Codes Cryptogr..
[3] Sung Y. Song. Class 3 Association Schemes Whose Symmetrizations Have Two Classes , 1995, J. Comb. Theory, Ser. A.
[4] Xavier L. Hubaut,et al. Strongly regular graphs , 1975, Discret. Math..
[5] E. Bannai,et al. Algebraic Combinatorics I: Association Schemes , 1984 .
[6] Andries E. Brouwer,et al. Strongly regular graphs and partial geometries , 1984 .
[7] Akihiro Munemasa,et al. Amorphous Association Schemes over the Galois Rings of Characteristic 4 , 1991, Eur. J. Comb..
[8] N. J. A. Sloane,et al. Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..
[9] Hikoe Enomoto,et al. Distance-regular digraphs of girth 4 , 1987, J. Comb. Theory, Ser. B.
[10] R. W. Goldbach,et al. Feasibility conditions for non-symmetric 3-class association schemes , 1996, Discret. Math..
[11] Mieko Yamada. Distance-regular digraphs of girth 4 over an extension ring of Z/4Z , 1990, Graphs Comb..
[12] E. V. Dam. Three-Class Association Schemes , 1999 .
[13] Surveys in Combinatorics: Strongly regular graphs , 1979 .
[14] Robert A. Liebler,et al. Certain distance-regular digraphs and related rings of characteristic 4 , 1988, J. Comb. Theory, Ser. A.
[15] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[16] A. Neumaier,et al. Distance Regular Graphs , 1989 .
[17] T. Helleseth,et al. On the weight hierarchy of Kerdock codes over Z4 , 1996, IEEE Trans. Inf. Theory.
[18] T Ito,et al. 特性4のGalois環上の非晶質関連構想 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1991 .