An analysis of movement patterns between zones using taxi GPS data

[1]  Hjp Harry Timmermans,et al.  Multidimensional sequence alignment methods for activity-travel pattern analysis : a comparison of dynamic programming and genetic algorithms , 2010 .

[2]  Benjamin C. M. Fung,et al.  Anonymizing trajectory data for passenger flow analysis , 2014 .

[3]  Charlie Karlsson,et al.  The identification of functional regions: theory, methods, and applications , 2006 .

[4]  Ka Kee Alfred Chu,et al.  Enriching Archived Smart Card Transaction Data for Transit Demand Modeling , 2008 .

[5]  Miguel-Ángel Manso-Callejo,et al.  Zone design of specific sizes using adaptive additively weighted Voronoi diagrams , 2012, Int. J. Geogr. Inf. Sci..

[6]  Nigel H. M. Wilson,et al.  Unified estimator for excess journey time under heterogeneous passenger incidence behavior using smartcard data , 2013 .

[7]  Fernando Bação,et al.  Applying genetic algorithms to zone design , 2005, Soft Comput..

[8]  Giovanni Fusco,et al.  Hierarchical Clustering through Spatial Interaction Data. The Case of Commuting Flows in South-Eastern France , 2011, ICCSA.

[9]  Bing He,et al.  Mining patterns of author orders in scientific publications , 2012, J. Informetrics.

[10]  Yuan Tian,et al.  Understanding intra-urban trip patterns from taxi trajectory data , 2012, J. Geogr. Syst..

[11]  C. Gold Problems with handling spatial data ― the Voronoi approach , 1991 .

[12]  Peter White,et al.  The Potential of Public Transport Smart Card Data , 2005 .

[13]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[14]  Jong-Ha Lee,et al.  Topology Preserving Relaxation Labeling for Nonrigid Point Matching , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Sungho Kim,et al.  An analysis on movement patterns between zones using smart card data in subway networks , 2014, Int. J. Geogr. Inf. Sci..

[16]  Marcela Munizaga,et al.  Estimation of a disaggregate multimodal public transport Origin-Destination matrix from passive smartcard data from Santiago, Chile , 2012 .

[17]  Sumeeta Srinivasan,et al.  TRAVEL BEHAVIOR AT THE HOUSEHOLD LEVEL: UNDERSTANDING LINKAGES WITH RESIDENTIAL CHOICE , 2002 .

[18]  David S. Doermann,et al.  Robust point matching for nonrigid shapes by preserving local neighborhood structures , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Hui Xiong,et al.  Discovering Urban Functional Zones Using Latent Activity Trajectories , 2015, IEEE Transactions on Knowledge and Data Engineering.

[20]  Wonjae Jang,et al.  Travel Time and Transfer Analysis Using Transit Smart Card Data , 2010 .

[21]  Chandra Bhat,et al.  Modeling the Commute Activity-Travel Pattern of Workers: Formulation and Empirical Analysis , 2001, Transp. Sci..

[22]  Corina da Costa Freitas,et al.  Efficient regionalization techniques for socio‐economic geographical units using minimum spanning trees , 2006, Int. J. Geogr. Inf. Sci..

[23]  Ka Kee Alfred Chu,et al.  Augmenting Transit Trip Characterization and Travel Behavior Comprehension , 2010 .

[24]  Xiaolei Ma,et al.  Mining smart card data for transit riders’ travel patterns , 2013 .