Dynamic distributions and changing copulas

A copula models the relationships between variables independently of their marginal distributions. When the variables are time series, the copula may change over time. A statistical framework is suggested for tracking these changes over time. When the marginal distribu- tions change, pre-filtering is necessary before constructing the indicator variables on which the tracking of the copula is based. This entails solving an even more basic problem, namely estimating time-varying quantiles. The methods are applied to the Hong Kong and Korean stock market indices. Some interesting movements are detected, particularly after the attack on the Hong Kong dollar in 1997.

[1]  M. C. Jones,et al.  Local Linear Quantile Regression , 1998 .

[2]  A. Azzalini A note on the estimation of a distribution function and quantiles by a kernel method , 1981 .

[3]  Eric Jondeau,et al.  Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements , 2003 .

[4]  Kee-Hong Bae,et al.  A New Approach to Measuring Financial Contagion , 2000 .

[5]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter. , 1991 .

[6]  O. Scaillet,et al.  Nonparametric Estimation of Copulas for Time Series , 2002 .

[7]  Campbell R. Harvey,et al.  Autoregressive conditional skewness , 1999 .

[8]  Turalay Kenc,et al.  Ox: An Object-Oriented Matrix Language , 1997 .

[9]  S. Rachev Handbook of heavy tailed distributions in finance , 2003 .

[10]  J. E. Miller,et al.  A non-Gaussian state space model and application to prediction of records , 1986 .

[11]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[12]  F. Diebold,et al.  VOLATILITY AND CORRELATION FORECASTING , 2006 .

[13]  S. Koopman,et al.  Disturbance smoother for state space models , 1993 .

[14]  Jim Q. Smith The Multiparameter Steady Model , 1981 .

[15]  Jim Q. Smith A Generalization of the Bayesian Steady Forecasting Model , 1979 .

[16]  Oliver Linton,et al.  The quantilogram: With an application to evaluating directional predictability , 2007 .

[17]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[18]  R. Nelsen An Introduction to Copulas , 1998 .

[19]  Andrew Harvey,et al.  Quantiles, expectiles and splines , 2009 .

[20]  Sanjiv Ranjan Das,et al.  Systemic Risk and International Portfolio Choice , 2002 .

[21]  Nonparametric Estimation of Copulas for Time Series , 2007 .

[22]  Andrew Harvey,et al.  Time Series Models for Count or Qualitative Observations , 1989 .

[23]  H. White,et al.  On More Robust Estimation of Skewness and Kurtosis: Simulation and Application to the S&P500 Index , 2003 .

[24]  Giuliano De Rossi,et al.  Time-Varying Quantiles , 2006 .

[25]  C. Granger,et al.  Handbook of Economic Forecasting , 2006 .

[26]  Vance L. Martin,et al.  Empirical modelling of contagion: a review of methodologies , 2005 .

[27]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[28]  W. Kruskal Ordinal Measures of Association , 1958 .

[29]  Jurgen A. Doornik,et al.  Statistical algorithms for models in state space using SsfPack 2.2 , 1999 .

[30]  E. Luciano,et al.  Copula methods in finance , 2004 .

[31]  J. C. Rodríguez,et al.  Measuring financial contagion:a copula approach , 2007 .

[32]  R. Rigobón,et al.  No Contagion, Only Interdependence: Measuring Stock Market Co-Movements , 1999 .

[33]  C. Genest,et al.  Multivariate Option Pricing Using Dynamic Copula Models , 2005 .

[34]  R. Engle,et al.  CAViaR , 1999 .

[35]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[36]  A. Harvey,et al.  Tests of time-invariance , 2007 .

[37]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .