Improved Electrochemical Performance and Chemical Stability of Thin-Film Lithium Phosphorus Oxynitride Electrolyte by Appropriate Fluorine Plasma Treatment

[1]  Yuji Honda,et al.  Preparation of highly ionic conductive lithium phosphorus oxynitride electrolyte particles using the polygonal barrel-plasma treatment method , 2022, Journal of Alloys and Compounds.

[2]  Z. Fu,et al.  All-solid-state thin-film batteries based on lithium phosphorus oxynitrides , 2022, Materials Futures.

[3]  Xiaokun Zhang,et al.  Stable Lithium Plating and Stripping Enabled by a LiPON Nanolayer on PP Separator. , 2022, Small.

[4]  Kangli Wang,et al.  CF4 Plasma‐Generated LiF‐Li2C2 Artificial Layers for Dendrite‐Free Lithium‐Metal Anodes , 2022, Advanced science.

[5]  Bingbing Tian,et al.  Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy , 2022, Nano Research.

[6]  F. Berkemeier,et al.  High performance all-solid-state lithium battery: Assessment of the temperature dependence of Li diffusion , 2022, Journal of Power Sources.

[7]  Liquan Chen,et al.  Doping Strategy and Mechanism for Oxide and Sulfide Solid Electrolytes with High Ionic Conductivity , 2022, Journal of Materials Chemistry A.

[8]  G. Rubloff,et al.  Nanoscale Li, Na, and K Ion-Conducting Polyphosphazenes by Atomic Layer Deposition , 2022, Dalton Transactions.

[9]  Xiu-li Wang,et al.  Boosting safety and performance of lithium-ion battery enabled by cooperation of thermotolerant fire-retardant composite membrane and nonflammable electrolyte , 2021, Chemical Engineering Journal.

[10]  Xiao‐Qing Yang,et al.  A new carbon-incorporated lithium phosphate solid electrolyte , 2021, Journal of Power Sources.

[11]  Feixiang Wu,et al.  Air‐stable inorganic solid‐state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects , 2021, InfoMat.

[12]  Yingying Lu,et al.  A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries , 2021, Nature Communications.

[13]  Frederic Aguesse,et al.  Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing , 2021 .

[14]  Quan-hong Yang,et al.  A Protective Layer for Lithium Metal Anode: Why and How. , 2021, Small methods.

[15]  Qian Sun,et al.  Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries , 2020 .

[16]  Xin Xu,et al.  Structure characterizations of SnF2-WO3-B2O3-P2O5 glass with ultra low transition temperature , 2020 .

[17]  Liquan Chen,et al.  Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. , 2019, Chemical reviews.

[18]  H. Eckert,et al.  Review on the structural analysis of fluoride-phosphate and fluoro-phosphate glasses , 2019, Journal of Non-Crystalline Solids: X.

[19]  Xifei Li,et al.  Controllable Cathode–Electrolyte Interface of Li[Ni0.8Co0.1Mn0.1]O2 for Lithium Ion Batteries: A Review , 2019, Advanced Energy Materials.

[20]  M. Engelhard,et al.  Role of inorganic surface layer on solid electrolyte interphase evolution at Li-metal anodes. , 2019, ACS applied materials & interfaces.

[21]  Kihong Kim,et al.  Chemical/morphological transition behavior of lithium phosphorus oxynitride solid-electrolyte in air: An analytical approach based on X-ray photoelectron spectroscopy and atomic force microscopy , 2018, Journal of Power Sources.

[22]  F. Berkemeier,et al.  The influence of sputter conditions on the properties of LiPON and its interfaces , 2018, Journal of Power Sources.

[23]  J. Guilment,et al.  Effect of melting parameters during synthesis on the structure and properties of tin fluoride phosphate glasses , 2018, Journal of Non-Crystalline Solids.

[24]  Arumugam Manthiram,et al.  Electrode–electrolyte interfaces in lithium-based batteries , 2018 .

[25]  T. Abe,et al.  Surface and interface sciences of Li-ion batteries , 2017 .

[26]  R. Hausbrand,et al.  Interfacial instability of amorphous LiPON against lithium: A combined Density Functional Theory and spectroscopic study , 2017 .

[27]  X. Huang,et al.  Improved Stability of $\alpha $ -InGaZnO Thin-Film Transistor under Positive Gate Bias Stress by Using Fluorine Plasma Treatment , 2017, IEEE Electron Device Letters.

[28]  F. L. Cras,et al.  Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy , 2016 .

[29]  Zachary D. Hood,et al.  Reduction of charge-transfer resistance at the solid electrolyte – electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source , 2016 .

[30]  Yu-Guo Guo,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[31]  Nerea Mascaraque,et al.  Effect of fluorine and nitrogen on the chemical durability of lithium phosphate glasses , 2015 .

[32]  A. Schwöbel,et al.  Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission , 2015 .

[33]  F. Berkemeier,et al.  Ultra-thin LiPON films – Fundamental properties and application in solid state thin film model batteries , 2015 .

[34]  Nerea Mascaraque,et al.  Structure and electrical properties of a new thio-phosphorus oxynitride glass electrolyte , 2014 .

[35]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[36]  Xifei Li,et al.  Low energy ion beam assisted deposition of controllable solid state electrolyte LiPON with increased mechanical properties and ionic conductivity , 2014 .

[37]  N. D. de Leeuw,et al.  Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses. , 2014, Biomaterials.

[38]  Nerea Mascaraque,et al.  Nitrogen and fluorine anionic substitution in lithium phosphate glasses , 2014 .

[39]  H. Park,et al.  Characteristics of lithium phosphorous oxynitride thin films deposited by metal-organic chemical vapor deposition technique , 2013 .

[40]  Dongwook Shin,et al.  The mixed former effect in lithium borophosphate oxynitride thin film electrolytes for all-solid-state micro-batteries , 2013 .

[41]  Nerea Mascaraque,et al.  An interpretation for the increase of ionic conductivity by nitrogen incorporation in LiPON oxynitride glasses , 2013 .

[42]  A. Kovalskiy,et al.  Structure of SnF2-SnO-P2O5 Glasses , 2013 .

[43]  W. Jaegermann,et al.  Temperature dependent phosphorous oxynitride growth for all-solid-state batteries , 2011 .

[44]  B. Pecquenard,et al.  Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance , 2011 .

[45]  P. Rolland,et al.  Further studies on the lithium phosphorus oxynitride solid electrolyte , 2010 .

[46]  Boyuan Zhao,et al.  Studies on Reaction Kinetics of LiOH for Absorbing CO2 , 2009, 2009 Asia-Pacific Power and Energy Engineering Conference.

[47]  Fu Zhengwen,et al.  Stability of Lithium Phosphorous Oxynitride Thin Films in Humid Air , 2006 .

[48]  Sung-Man Lee,et al.  Electrical conductivity in Li–Si–P–O–N oxynitride thin-films , 2003 .

[49]  Richard K. Brow,et al.  Review: the structure of simple phosphate glasses , 2000 .

[50]  G. Venugopal,et al.  Sodium ion conducting glasses with mixed glass formers NaI–Na2O–V2O5–B2O3: application to solid state battery , 1999 .

[51]  P. Birke,et al.  Materials for lithium thin-film batteries for application in silicon technology , 1996 .

[52]  R. Gopalakrishnan,et al.  Electrical and structural studies of lithium fluorophosphate glasses , 1995 .

[53]  J. D. Robertson,et al.  Electrical properties of amorphous lithium electrolyte thin films , 1992 .

[54]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .

[55]  Zoe A. Osborne,et al.  Short-range structure of fluorine-modified phosphate glass , 1990, Optics & Photonics.

[56]  M. Poulain,et al.  Ionic conductivity in fluorine-containing glasses , 1989 .

[57]  G. W. Arnold,et al.  Corrosion of Phosphorus Oxynitride Glasses in Water and Humid Air , 1987 .

[58]  D. P. Button,et al.  Fast ion transport in oxide glasses , 1980 .

[59]  D. Williams,et al.  Effect of Water Vapor on the LiOH-CO2 Reaction. Dynamic Isothermal System , 1970 .