PIAS1 protects against myocardial ischemia-reperfusion injury by stimulating PPARγ SUMOylation

[1]  M. Karin,et al.  NF-κB, inflammation, immunity and cancer: coming of age , 2018, Nature Reviews Immunology.

[2]  Shao-Cong Sun,et al.  The non-canonical NF-κB pathway in immunity and inflammation , 2017, Nature Reviews Immunology.

[3]  K. Kaur,et al.  Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy , 2017, The Journal of Biological Chemistry.

[4]  A. Dejean,et al.  SUMO and the robustness of cancer , 2017, Nature Reviews Cancer.

[5]  M. Zhu,et al.  SUMO-specific protease 1 protects neurons from apoptotic death during transient brain ischemia/reperfusion , 2016, Cell Death and Disease.

[6]  Shemin Lu,et al.  Specific regulation of PRMT1 expression by PIAS1 and RKIP in BEAS-2B epithelia cells and HFL-1 fibroblasts in lung inflammation , 2016, Scientific Reports.

[7]  S. Xue,et al.  Peroxisome proliferator-activated receptor γ (PPARγ) mediates the protective effect of quercetin against myocardial ischemia-reperfusion injury via suppressing the NF-κB pathway. , 2016, American journal of translational research.

[8]  L. Zou,et al.  The SUMO (Small Ubiquitin-like Modifier) Ligase PIAS3 Primes ATR for Checkpoint Activation* , 2015, The Journal of Biological Chemistry.

[9]  Wei Jia,et al.  Protein Inhibitor of Activated STAT 1 (PIAS1) Protects Against Obesity-Induced Insulin Resistance by Inhibiting Inflammation Cascade in Adipose Tissue , 2015, Diabetes.

[10]  A. S. Attia,et al.  Mangiferin Mitigates Gastric Ulcer in Ischemia/ Reperfused Rats: Involvement of PPAR-γ, NF-κB and Nrf2/HO-1 Signaling Pathways , 2015, PloS one.

[11]  H. Lomelí,et al.  PIAS-like protein Zimp7 is required for the restriction of the zebrafish organizer and mesoderm development. , 2015, Developmental biology.

[12]  Ye Wang,et al.  Activation of Peroxisome Proliferator-Activated Receptor γ (PPARγ) Through NF-κB/Brg1 and TGF-ß1 Pathways Attenuates Cardiac Remodeling in Pressure-Overloaded Rat Hearts , 2015, Cellular Physiology and Biochemistry.

[13]  S. Goyal,et al.  Hesperidin Produces Cardioprotective Activity via PPAR-γ Pathway in Ischemic Heart Disease Model in Diabetic Rats , 2014, PloS one.

[14]  S. Xue,et al.  SENP1 protects against myocardial ischaemia/reperfusion injury via a HIF1α-dependent pathway. , 2014, Cardiovascular research.

[15]  Zhixin Wu,et al.  The Role of SUMO-Conjugating Enzyme Ubc9 in the Neuroprotection of Isoflurane Preconditioning Against Ischemic Neuronal Injury , 2014, Molecular Neurobiology.

[16]  K. Yoshikawa,et al.  Necdin Promotes Ubiquitin-Dependent Degradation of PIAS1 SUMO E3 Ligase , 2014, PloS one.

[17]  Hong Jiang,et al.  Quercetin Inhibits Left Ventricular Hypertrophy in Spontaneously Hypertensive Rats and Inhibits Angiotensin II-Induced H9C2 Cells Hypertrophy by Enhancing PPAR-γ Expression and Suppressing AP-1 Activity , 2013, PloS one.

[18]  B. Hammock,et al.  A potent soluble epoxide hydrolase inhibitor, t-AUCB, acts through PPARγ to modulate the function of endothelial progenitor cells from patients with acute myocardial infarction. , 2013, International journal of cardiology.

[19]  F. Melchior,et al.  Sumoylation: a regulatory protein modification in health and disease. , 2013, Annual review of biochemistry.

[20]  J. M. Suh,et al.  PPARγ signaling and metabolism: the good, the bad and the future , 2013, Nature Medicine.

[21]  D. Yellon,et al.  Myocardial ischemia-reperfusion injury: a neglected therapeutic target. , 2013, The Journal of clinical investigation.

[22]  Christopher M Hickey,et al.  Function and regulation of SUMO proteases , 2012, Nature Reviews Molecular Cell Biology.

[23]  H. Yamanaka-Okumura,et al.  Liver X receptor negatively regulates fibroblast growth factor 21 in the fatty liver induced by cholesterol-enriched diet. , 2012, The Journal of nutritional biochemistry.

[24]  M. Avantaggiati,et al.  An acetylation switch regulates SUMO-dependent protein interaction networks. , 2012, Molecular cell.

[25]  Farshid S. Garmaroudi,et al.  Inflammation in Myocardial Diseases , 2012, Circulation research.

[26]  C. Glass,et al.  PPARs and lipid ligands in inflammation and metabolism. , 2011, Chemical reviews.

[27]  B. Gersh,et al.  Reperfusion Injury, Microvascular Dysfunction, and Cardioprotection: The “Dark Side” of Reperfusion , 2009, Circulation.

[28]  J. Palvimo,et al.  PIAS proteins: pleiotropic interactors associated with SUMO , 2009, Cellular and Molecular Life Sciences.

[29]  T. Osumi,et al.  Aspects of the regulatory mechanisms of PPAR functions: Analysis of a bidirectional response element and regulation by sumoylation , 2006, Molecular and Cellular Biochemistry.

[30]  Amir Gamliel,et al.  A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ , 2005, Nature.

[31]  K. Shuai,et al.  Regulation of gene-activation pathways by PIAS proteins in the immune system , 2005, Nature Reviews Immunology.