Total Ionizing Dose Tolerance of ${\rm Ag} - {\rm Ge}_{40}{\rm S}_{60}$ based Programmable Metallization Cells

Programmable Metallization Cells (PMC) are two-terminal elements that exhibit resistance switching based on the combination of bias dependent ion conduction through a solid-state electrolyte and reduction/oxidation (redox) reactions occurring at the electrode terminals. PMC based resistive random access memory (ReRAM) is currently used in emerging nonvolatile memory technologies and has the potential to be the successor of current flash memory. In this study we demonstrate the radiation tolerance of Ag-doped Ge40S60 based PMC elements that were irradiated up to a total ionizing dose (TID) of 10 Mrad(Ge40S60) using 60Co gamma rays. The irradiation tests on the PMC devices, with two different Ag anode thicknesses (35 nm and 100 nm), show no significant degradation in the resistance switching characteristics.

[1]  Kazunobu Tanaka,et al.  Photo-induced metastability in amorphous semiconductors , 1991 .

[2]  M. Kozicki,et al.  Nanoscale phase separation in Ag-Ge-Se glasses , 2002 .

[3]  Maria Mitkova,et al.  Information storage using nanoscale electrodeposition of metal in solid electrolytes , 2003 .

[4]  Maria Mitkova,et al.  Local structure resulting from photo and thermal diffusion of Ag in Ge-Se thin films , 2004 .

[5]  Maria Mitkova,et al.  Thermal and photodiffusion of Ag in S-rich Ge-S amorphous films , 2004 .

[6]  M. Fontana,et al.  Ionic conductivity (Ag+) in AgGeSe glasses , 2005 .

[7]  A. Visconti,et al.  Radiation induced leakage current in floating gate memory cells , 2005, IEEE Transactions on Nuclear Science.

[8]  M. Kozicki,et al.  Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes , 2005, Symposium Non-Volatile Memory Technology 2005..

[9]  Maria Mitkova,et al.  Crystallization effects in annealed thin Ge–Se films photodiffused with Ag , 2006 .

[10]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[11]  A. Visconti,et al.  Total Ionizing Dose Effects in NOR and NAND Flash Memories , 2007, IEEE Transactions on Nuclear Science.

[12]  D.N. Nguyen,et al.  Total Ionizing Dose (TID) Tests on Non-Volatile Memories: Flash and MRAM , 2007, 2007 IEEE Radiation Effects Data Workshop.

[13]  M. Kozicki,et al.  Ag-photodoping in Ge-chalcogenide amorphous thin films—Reaction products and their characterization , 2007 .

[14]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[15]  F. Ottogalli,et al.  Total Ionizing Dose Effects on 4 Mbit Phase Change Memory Arrays , 2008, IEEE Transactions on Nuclear Science.

[16]  A. Cester,et al.  Ionizing Radiation Effect on Ferroelectric Nonvolatile Memories and Its Dependence on the Irradiation Temperature , 2008, IEEE Transactions on Nuclear Science.

[17]  D. Ielmini,et al.  Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Transactions on Electron Devices.

[18]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[19]  Romney R. Katti,et al.  Heavy-Ion and Total Ionizing Dose (TID) Performance of a 1 Mbit Magnetoresistive Random Access Memory (MRAM) , 2009, 2009 IEEE Radiation Effects Data Workshop.

[20]  D. Ielmini,et al.  Voltage-Driven On–Off Transition and Tradeoff With Program and Erase Current in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Electron Device Letters.

[21]  M. Mitkova,et al.  Structural details of Ge‐rich and silver‐doped chalcogenide glasses for nanoionic nonvolatile memory , 2010 .

[22]  Qi Liu,et al.  Highly Stable Radiation-Hardened Resistive-Switching Memory , 2010, IEEE Electron Device Letters.

[23]  Michael N. Kozicki,et al.  Power and Energy Perspectives of Nonvolatile Memory Technologies , 2010, Proceedings of the IEEE.

[24]  Yan Wang,et al.  Proton-based total-dose irradiation effects on Cu/HfO2:Cu/Pt ReRAM devices , 2010, Nanotechnology.

[25]  E. E. King,et al.  Radiation Hardness of ${\rm TiO}_{2}$ Memristive Junctions , 2010, IEEE Transactions on Nuclear Science.

[26]  Yi Ma,et al.  Demonstration of Conductive Bridging Random Access Memory (CBRAM) in logic CMOS process , 2011 .

[27]  Structural study of Ag-Ge-S solid electrolyte glass system for resistive radiation sensing , 2011, 2011 IEEE Workshop on Microelectronics and Electron Devices.

[28]  H. Hwang,et al.  Proton Irradiation Effects on Resistive Random Access Memory With ZrO$_{\rm x}$ /HfO$_{\rm x}$ Stacks , 2011, IEEE Transactions on Nuclear Science.

[29]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[30]  R. Geer,et al.  Superior TID Hardness in TiN/HfO $_{2}$/TiN ReRAMs After Proton Radiation , 2012, IEEE Transactions on Nuclear Science.

[31]  Effects of Cobalt-60 Gamma-Rays on Ge-Se Chalcogenide Glasses and Ag/Ge-Se Test Structures , 2012, IEEE Transactions on Nuclear Science.

[32]  M. Kozicki,et al.  Cation-based resistance change memory , 2013 .

[33]  H. Barnaby,et al.  Total-Ionizing-Dose Effects on the Resistance Switching Characteristics of Chalcogenide Programmable Metallization Cells , 2013, IEEE Transactions on Nuclear Science.

[34]  G. Vizkelethy,et al.  Total ionizing dose and displacement damage effects on TaOx memristive memories , 2013, 2013 IEEE Aerospace Conference.

[35]  Michael N. Kozicki,et al.  Invited) Programmable Metallization Cells in Memory and Switching Applications , 2013 .

[36]  H. Barnaby,et al.  Sensors Based on Radiation-Induced Diffusion of Silver in Germanium Selenide Glasses , 2013, IEEE Transactions on Nuclear Science.