Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature

In this paper we study the asymptotic behavior of a family of polynomials which are orthogonal with respect to an exponential weight on certain contours of the complex plane. The zeros of these polynomials are the nodes for complex Gaussian quadrature of an oscillatory integral on the real axis with a high order stationary point, and their limit distribution is also analyzed. We show that the zeros accumulate along a contour in the complex plane that has the S-property in an external field. In addition, the strong asymptotics of the orthogonal polynomials are obtained by applying the nonlinear Deift-Zhou steepest descent method to the corresponding Riemann-Hilbert problem.

[1]  Arieh Iserles,et al.  Highly Oscillatory Problems , 2009 .

[2]  W. Van Assche,et al.  The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1] , 2001 .

[3]  A. Aptekarev Sharp constants for rational approximations of analytic functions , 2002 .

[4]  Marco Bertola,et al.  Boutroux curves with external field: equilibrium measures without a minimization problem , 2007, 0705.3062.

[5]  A. Kuijlaars,et al.  Asymptotic Zero Behavior of Laguerre Polynomials with Negative Parameter , 2002, math/0205175.

[6]  Kurt Strebel,et al.  The Metric Associated with a Quadratic Differential , 1984 .

[7]  Andrei Mart,et al.  On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters , 2001 .

[8]  L. M. Abia Complex Methods in Approximation Theory, A. Martínez Finkelshtein, P. Marcellán y J. J. Moreno Balcázar (Eds.), Universidad de Almería. Servicio de Publicaciones. , 2009 .

[9]  Marco Bertola,et al.  Boutroux curves with external field: equilibrium measures without a variational problem , 2011 .

[10]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[11]  Andrei Martínez-Finkelshtein,et al.  On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters , 2001 .

[12]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .

[13]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997, Grundlehren der mathematischen Wissenschaften.

[14]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[15]  M. Y. Mo,et al.  Commuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights , 2006 .

[16]  R. Khabibullin,et al.  Asymptotic expansions for polynomials orthogonal with respect to a complex non-constant weight function , 2007 .

[17]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[18]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Laguerre Polynomials with Large Negative Parameter , 2001 .

[19]  Daan Huybrechs,et al.  Complex Gaussian quadrature of oscillatory integrals , 2009, Numerische Mathematik.

[20]  Jinho Baik,et al.  Optimal tail estimates for directed last passage site percolation with geometric random variables , 2001 .

[21]  Athanassios S. Fokas,et al.  The isomonodromy approach to matric models in 2D quantum gravity , 1992 .

[22]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1992, math/9201261.

[23]  Ramón A. Orive Rodríguez,et al.  Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour , 2005, J. Approx. Theory.

[24]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, I , 1986 .

[25]  Daan Huybrechs,et al.  Highly Oscillatory Quadrature , 2022 .

[26]  A. Martínez-Finkelshtein,et al.  Strong asymptotics for Jacobi polynomials with varying nonstandard parameters , 2003 .

[27]  Daan Huybrechs,et al.  Highly Oscillatory Problems: Highly oscillatory quadrature , 2009 .

[28]  Herbert Stahl,et al.  Orthogonal polynomials with complex-valued weight function, II , 1986 .

[29]  E. Rakhmanov,et al.  EQUILIBRIUM DISTRIBUTIONS AND DEGREE OF RATIONAL APPROXIMATION OF ANALYTIC FUNCTIONS , 1989 .

[30]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[31]  F. Balogh,et al.  On the norms and roots of orthogonal polynomials in the plane and L p -optimal polynomials with respect to varying weights , 2009 .

[32]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..