A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres.

The nitrogen-vacancy defect centre in diamond has potential applications in nanoscale electric and magnetic-field sensing, single-photon microscopy, quantum information processing and bioimaging. These applications rely on the ability to position a single nitrogen-vacancy centre within a few nanometres of a sample, and then scan it across the sample surface, while preserving the centre's spin coherence and readout fidelity. However, existing scanning techniques, which use a single diamond nanocrystal grafted onto the tip of a scanning probe microscope, suffer from short spin coherence times due to poor crystal quality, and from inefficient far-field collection of the fluorescence from the nitrogen-vacancy centre. Here, we demonstrate a robust method for scanning a single nitrogen-vacancy centre within tens of nanometres from a sample surface that addresses both of these concerns. This is achieved by positioning a single nitrogen-vacancy centre at the end of a high-purity diamond nanopillar, which we use as the tip of an atomic force microscope. Our approach ensures long nitrogen-vacancy spin coherence times (∼75 µs), enhanced nitrogen-vacancy collection efficiencies due to waveguiding, and mechanical robustness of the device (several weeks of scanning time). We are able to image magnetic domains with widths of 25 nm, and demonstrate a magnetic field sensitivity of 56 nT Hz(-1/2) at a frequency of 33 kHz, which is unprecedented for scanning nitrogen-vacancy centres.

[1]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[2]  C. Degen,et al.  Scanning magnetic field microscope with a diamond single-spin sensor , 2008, 0805.1215.

[3]  Aurélien Drezet,et al.  Near-field optical microscopy with a nanodiamond-based single-photon tip. , 2009, Optics express.

[4]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[5]  R. Hanson,et al.  Single-spin magnetometry with multipulse sensing sequences. , 2010, Physical review letters.

[6]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[7]  V. Sandoghdar,et al.  Optical microscopy using a single-molecule light source , 2000, Nature.

[8]  Marko Loncar,et al.  Fabrication of diamond nanowires for quantum information processing applications , 2009, 0908.0352.

[9]  J. Tetienne,et al.  Nanoscale magnetic field mapping with a single spin scanning probe magnetometer , 2011, 1108.4438.

[10]  Eric van Oort,et al.  Optically detected low field electron spin echo envelope modulations of fluorescent N-V centers in diamond , 1990 .

[11]  D. J. Twitchen,et al.  Quantum register based on coupled electron spins in a room-temperature solid. , 2010 .

[12]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[13]  P. Recher,et al.  Quantum dots and spin qubits in graphene , 2010, Nanotechnology.

[14]  G. Berman,et al.  Spin Microscope Based on Optically Detected Magnetic Resonance , 2004, quant-ph/0405143.

[15]  V. Letokhov,et al.  Nanometer-resolution scanning optical microscope with resonance excitation of the fluorescence of the samples from a single-atom excited center , 1996 .

[16]  R. Kalish,et al.  Nitrogen doping of diamond by ion implantation , 1997 .

[17]  O. Arcizet,et al.  Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity , 2011 .

[18]  J. Ziegler THE STOPPING AND RANGE OF IONS IN SOLIDS , 1988 .

[19]  Fedor Jelezko,et al.  Increasing the coherence time of single electron spins in diamond by high temperature annealing , 2010 .

[20]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[21]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[22]  J. Twamley,et al.  Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. , 2010, Nature nanotechnology.

[23]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[24]  L. Childress,et al.  Supporting Online Material for , 2006 .

[25]  M. Konoto,et al.  High-resolution spin-polarized scanning electron microscopy (spin SEM). , 2010, Journal of electron microscopy.

[26]  V. Sandoghdar,et al.  Diamond colour centres as a nanoscopic light source for scanning near‐field optical microscopy , 2001, Journal of microscopy.

[27]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[28]  J. Gilman,et al.  Nanotechnology , 2001 .

[29]  G. Schmid The Nature of Nanotechnology , 2010 .

[30]  M. Lukin,et al.  Quantum control of proximal spins using nanoscale magnetic resonance imaging , 2011, 1103.0546.

[31]  C. L. Lee,et al.  Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma , 2008 .

[32]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[33]  B. Büchner,et al.  Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy , 2010, Nanotechnology.

[34]  N. D. Lai,et al.  Influence of a static magnetic field on the photoluminescence of an ensemble of nitrogen-vacancy color centers in a diamond single-crystal , 2009, 0908.1327.

[35]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[36]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[37]  Fedor Jelezko,et al.  Nanoscale engineering and optical addressing of single spins in diamond. , 2010, Small.

[38]  B C Buchler,et al.  Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. , 2005, Physical review letters.

[39]  S. A. Dodds,et al.  Chemical Physics , 1877, Nature.

[40]  Andrew G. Glen,et al.  APPL , 2001 .

[41]  S. S. Camargo,et al.  Diamond and Related Materials , 2000 .

[42]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[43]  D. Maclaurin,et al.  Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. , 2011, Nature nanotechnology.